Applied Deep Learning

Chapter 5: Skip Connection and Residual Networks

Ali Bereyhi

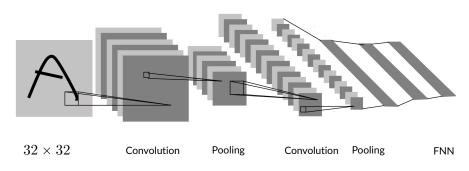
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

A Bit of History: LeNet

CNNs was first trained via gradient-based algorithms by Yan LeCun and his team: they could develop backpropagation through CNNs and hence they were able to efficiently implement it 1



¹Check out their paper at this link! The diagram is taken from the the paper

ILSVRC: ImageNet Large Scale Visual Recognition Challenge

The project ImageNet started a competition in 2010: it introduced a training dataset of 1.2 million images from 1000 different labels. The proposed trained architectures are then validated by a test dataset. The winner is the model with minimal classification error

The winners in 2010 and 2011 used shallow NNs!

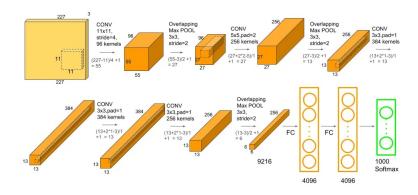
2010: Team NEC-UIUC

2011: Team XRCE

In 2012, Supervision from U of T trained a deep CNN and won ILSVRC

First Deep Winner: AlexNet

Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton proposed AlexNet which could greatly reduce the classification error²



²Check it out in their paper!

AlexNet to ZFNet

AlexNet was a deep CNN with 8 learnable layers

- 5 convolutional layers
- 3 fully-connected layers

Zeiler and Fergus won ILSVRC in 2013 by using the same architecture but doing accurate hyperparameter tuning³

At this point, going deeper considered as the key to success

³You may find details in their paper

VGG Architectures

Visual Geometry Group at Oxford University developed deeper CNNs: a class of architectures⁴

- VGG-11
- VGG-13
- VGG-16
- VGG-19

They could won ILSVRC localization task and took second place in classification: their results also showed an interesting finding

As we go deeper, the accuracy gets higher notably up to VGG-16; however, VGG-19 can only give marginal improvements!

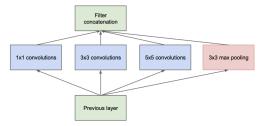
⁴Check VGG architectures out in their paper

VGG Architectures

GoogLeNet: 2014 Classification Winner

In 2014, Google introduced GoogLeNet: a deep CNN which uses fully-connected layer only at the output and is purely based on CNN⁵

- They introduced a new module called "inception module"



- Since there is no fully-connected layer it has much less model parameters
 - ↓ It hence requires less memory and is trained faster

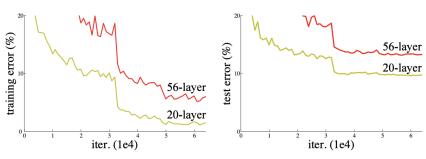
GoogLeNet won ILSVRC classification task

⁵Check GoogLeNet in their paper. The diagram is taken from original paper

A Hurdle in Going Deeper

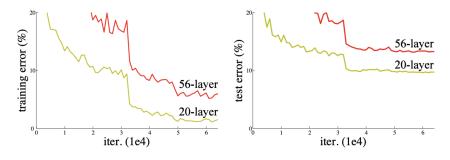
Though deep CNNs were doing good job, as people kept going deeper they realized that the performance is getting saturated. Later studies showed that much deeper CNNs start to perform worse!

- Initial guess for this behavior is overfitting



⁶Check it in this paper from which the figure is taken

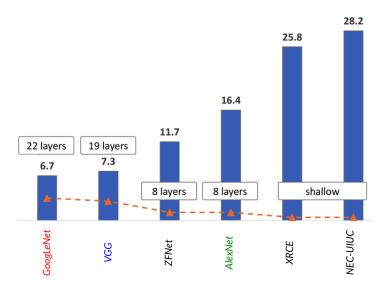
A Hurdle in Going Deeper



- + How do we see this conclusion in this figure?
- Well! If it's coming from overfitting we should see better training and worst test risk. This is however not the case here!

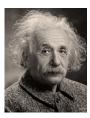
People started to blame the vanishing gradient behavior of deep NNs

Depth vs Accuracy: ILSVRC Winners till 2014



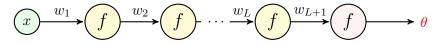
Problem of Depth

- + But, what is the problem of vanishing gradient?
- This is a general behavior in deep NNs: as we go deeper, the gradients determined by backpropagation at initial layers get smaller and smaller, such that at some point they stop getting updated anymore, even though they should
- + How does it come?
- Let's see it! But we follow Albert Einstein advice!



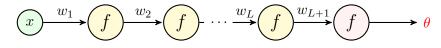
"Everything should be made as simple as possible, but not simpler!"

Consider the following dummy FNN: an FNN has a single scalar input, L hidden layers and a single scalar output. All neurons are activated by function $f\left(\cdot\right)$ and have no bias



Let's write forward pass

- $y_1 = f(w_1 x)$
- - . .
- $y_L = f(w_L y_{L-1})$
- $\theta = f(w_{L+1}y_L)$



Now, we go for backward pass: we start with $heta=\mathrm{d}\hat{R}/\mathrm{d} heta$ and go backward

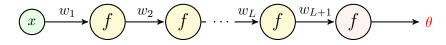
$$\bullet \ \theta = f\left(w_{L+1} \underline{y_L}\right)$$

$$\overleftarrow{y}_{L} = \frac{\mathrm{d}\hat{R}}{\mathrm{d}y_{L}} = \frac{\mathrm{d}\hat{R}}{\mathrm{d}\theta} \frac{\mathrm{d}\theta}{\mathrm{d}y_{L}} = \overleftarrow{\theta} w_{L+1} \dot{f} \left(w_{L+1} \mathbf{y}_{L} \right)$$

•
$$y_L = f(w_L y_{L-1})$$

$$\overline{y}_{L-1} = \frac{\mathrm{d}\hat{R}}{\mathrm{d}y_{L-1}} = \frac{\mathrm{d}\hat{R}}{\mathrm{d}y_{L}} \frac{\mathrm{d}y_{L}}{\mathrm{d}y_{L}} = \overline{y}_{L} w_{L} \dot{f} (w_{L} y_{L-1})$$

$$= \overline{\theta} w_{L+1} w_{L} \dot{f} (w_{L} y_{L-1}) \dot{f} (w_{L+1} y_{L})$$

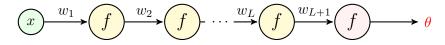


As we keep on going backward, the multiplication terms expand

$$\bullet \ \mathbf{y_2} = f\left(w_2\mathbf{y_1}\right)$$

$$\frac{\overleftarrow{y}_1}{dy_1} = \frac{d\widehat{R}}{dy_1} = \frac{d\widehat{R}}{dy_2} \frac{dy_2}{dy_1} = \underbrace{\overleftarrow{y_2}}_{2} w_2 \dot{f}(w_2 y_1)$$

$$= \underbrace{\overleftarrow{\theta}}_{\ell-2}^{L+1} w_\ell \dot{f}(w_\ell y_{\ell-1})$$



Now, let's compute derivative of loss with respect to the first weight w_1

$$\bullet \ \mathbf{y_1} = f\left(w_1 x\right)$$

$$\frac{\mathrm{d}\hat{R}}{\mathrm{d}w_{1}} = \frac{\mathrm{d}\hat{R}}{\mathrm{d}y_{1}} \frac{\mathrm{d}y_{1}}{\mathrm{d}w_{1}} = \overleftarrow{y_{1}}x\dot{f}(w_{1}x)$$

$$= \overleftarrow{\theta}x\dot{f}(w_{1}x) \prod_{\ell=2}^{L+1} w_{\ell}\dot{f}(w_{\ell}y_{\ell-1})$$

$$\frac{\mathrm{d}\hat{R}}{\mathrm{d}w_{1}} = \stackrel{\leftarrow}{\theta} x\dot{f}(w_{1}x) \prod_{\ell=2}^{L+1} w_{\ell}\dot{f}(w_{\ell}y_{\ell-1})$$
accumulated in Backpropagation

Now, consider the following cases

- Case I: We have a sigmoid activation and all weight are smaller than 1
 - \rightarrow Note that for sigmoid $\dot{f}(x) < 1$ for any x

$$\frac{\mathrm{d}\hat{R}}{\mathrm{d}w_{1}} = -\frac{\dot{\theta}}{\theta}x\dot{f}\left(w_{1}x\right)\prod_{\ell=2}^{L+1}w_{\ell}\dot{f}\left(w_{\ell}y_{\ell-1}\right) < \frac{\dot{\theta}}{\theta}xa^{2L+1}$$

Exploding Gradients: Simple Example

$$\frac{\mathrm{d}\hat{R}}{\mathrm{d}w_{1}} = \underbrace{\overset{\leftarrow}{\theta}}_{\text{accumulated in Backpropagation}} x\dot{f}\left(w_{1}x\right) \prod_{\ell=2}^{L+1} w_{\ell}\dot{f}\left(w_{\ell}y_{\ell-1}\right)$$

Now, consider the following cases

Case I: We have a sigmoid activation and all weight are smaller than 1

$$\lim_{L \uparrow \infty} \frac{\mathrm{d}\hat{R}}{\mathrm{d}w_1} = 0$$

□ Backpropagation accumulation concentrates at zero!

Gradient with respect to first layer vanishes as the network gets too deep

Exploding Gradients: Simple Example

$$\frac{\mathrm{d}\hat{R}}{\mathrm{d}w_1} = \frac{\overleftarrow{\theta}}{\underbrace{\theta}} x \dot{f}(w_1 x) \prod_{\ell=2}^{L+1} w_\ell \dot{f}(w_\ell y_{\ell-1})$$

Now, consider the following cases

- Case II: We have a ReLU activation and all weight are larger than 1
 - \downarrow Assume x > 0; then, $\dot{f}(w_{\ell}y_{\ell-1}) = 1$ since all the sequence is positive
 - There is one number a > 1 that all weights are larger than, e.g., $a = 1 + 10^{-10}$

$$\frac{\mathrm{d}\hat{R}}{\mathrm{d}w_1} = \overleftarrow{\theta}x\dot{f}(w_1x)\prod_{\ell=2}^{L+1} w_\ell \dot{f}(w_\ell y_{\ell-1}) > \overleftarrow{\theta}xa^L$$

$$\frac{\mathrm{d}\hat{R}}{\mathrm{d}w_1} = \underbrace{\overset{\leftarrow}{\theta}} x\dot{f}(w_1x) \prod_{\ell=2}^{L+1} w_\ell \dot{f}(w_\ell y_{\ell-1})$$
accumulated in Backpropagation

Now, consider the following cases

Case I: We have a ReLU activation and all weight are larger than 1

$$\lim_{L\uparrow\infty}\frac{\mathrm{d}\hat{R}}{\mathrm{d}w_1}\to\infty$$

□ Backpropagation accumulation explodes!

Gradient with respect to first layer explodes as the network gets too deep

Exploding-Vanishing Gradients: Summary

Moral of Story

As the network gets very deep, the gradients of initial layers can get extremely small or large

- The vanishing occurs more frequently

 - → Once they all get small, the gradient starts to vanish
- Weights and derivative of activation function are key deciders
 - \downarrow We need them to mostly around 1

The above observation also explains why we had some specific preferences

- We preferred ReLU activation in hidden layers
 - Arr ReLU (x) = 1 when x > 0
- We preferred normalized features
 - this can keep weights normalized

Exploding-Vanishing Gradients: Solution

- + But, is there any solution for that?
- Yes! Actually, we already had some one them!

In practice, we can use different approaches to control this behavior

- We use better activations in deep NNs
 - this is why in deep CNNs we use mostly ReLU
- We apply batch-normalization
- We use skip connection
 - this helps us go even deeper!

Let's understand what skip connection is!