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Big Picture: What to Train

In CNNs we need to train all learnable parameters, i.e.,
® weights and biases of output FNN
® weights in the filters of convolutional layers

* f we use advanced pooling with weights; then, we should find them as well

To train, we get dataset D = {(X,v;) : b =1,..., B} and train the CNN as

B
. 1
w”* = argmin R (w) = argmin B Z L (0p,vyp) (Training)

where 8, = CNN (X,|w) for the tensor-type data-point X, with label v},
L, We solve this optimization via a gradient-based method
L, This means we should be able to pass forward and backward
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Training CNNs

Computation Graph

Computation graph for single data-point X and its true label v is as follows

= mm e e e e e mmm e oo data-point (X, v) ————>R
: Conv |W1: ) : : @ < >FNN()

For simplicity, let’s assume that we are doing basic SGD
L, We need to pass forward X over this graph to get loss
L, We should then pass backward to compute gradient
Let’s try both directions
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Forward Pass over CNN

The forward pass is what we learned in the last section
® We pass X through first convolution to get Z;
®* We activate Z; toget Y
® We pool entries of Y and get Yl

¢ We flatten and pass forward through the output FNN

Once we are over, we have
L, all convolution, activated and pooled values in convolutional layers
L, all affine and activated values in the FNN
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Training CNNs Backpropagation

Backward Pass

e

We now want to backpropagate
L, We first compute Vgﬁ’
L, We the backpropagate over the FNN till we get to its input
At this point, we sort VyL}? in tensor by reversing the flattening

we now have VY R
L

We only need to learn how to backpropagate through pooling and convolutional
layers and then we can complete the backward pass!
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Training CNNs Backpropagation

Backpropagate through Pooling: Max-Pooling

Let's start with a simple example: in the following pooling layer, we have

partial derivatives with respect to pooled variables and want to compute the
partial derivatives with respect to input of pooling layer
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Training CNNs Backpropagation

Backpropagation: Max-Pooling

We can use chain rule
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Let’s see its visualization
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Backpropagation: Max-Pooling

Each derivative in green map gets multiplied with its filter and added to
corresponding entries on blue map
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Training CNNs Backpropagation

Backpropagate through Pooling: Mean-Pooling

Lets now consider mean-pooling: we have partial derivatives with respect to
pooled variables and want to compute the partial derivatives with respect to

input of pooling layer
\
IR D) CEA
o \ 1
1
\ \ \
wa |ys | we | | o
\ \ “W
A \ “
\ \ Y
LS \ R R
yrol s | Yo f\n U3 | Ua
‘\ '\
N \“\“‘\ [N \‘\\\‘“\
v “‘ ) N |
\\ \ "
\ \\ " l l
vl 4 4
\\\ \‘|
\\‘ \||
\\\‘| l l
W 4 4

Applied Deep Learning Chapter 4: Convolutional NNs © A. Bereyhi 2024 - 2025 9/52



Training CNNs Backpropagation

Backward Pass: Mean-Pooling
We again use chain rule
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Backward Pass: Mean-Pooling

It has same visualization: the filter is however this time fixed
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But we can visualize it even better!
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Training CNNs Backpropagation

Backward Pass: Mean-Pooling

In fact, this is simply a convolution
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Training CNNs Backpropagation

Backpropagation through Pooling: Summary

Depending on pooling function, backpropagation can be different
L, It's however usually described by a convolution

Moral of Story

Backpropagation through pooling can be done by a convolution-type operation
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Training CNNs Backpropagation

Backpropagation through Convolution: Activation

Convolutional layer has two operations
L, linear convolution

L, entry-wise activation

The entry-wise activation is readily backpropagate: say we have
Y =[(Z)
Then, we can backpropagate as in the fully-connected FNNs
VzR=VvyRO [ (Z)

Now, let’s look at linear convolution!
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Backpropagation: 2D Convolution

Let's find it out through a simple example: in the following convolutional
layer, we have partial derivatives with respect to convolved variables and want
to compute the partial derivatives with respect to input of convolutional layer

\
\\(171 LI i} r3 |
1 1
S \ \
1
N S \ i
VxR=7 ‘(L:4 VI | Te [ z1 z2
A \ Y >
T VzR
\\ \ \\|| z
T7 | X8 xT9 \ z3 Z4
‘\ \\\\‘\‘|
i AR ) B\
\\ ‘\ “‘l\‘ \\ \\ “‘\“
\\ \\ “‘
\\ \\ \“ w1 w9
\\\ \‘|
\:\ “I
hw w
\\\: 3 4

Applied Deep Learning Chapter 4: Convolutional NNs

© A. Bereyhi 2024 - 2025 15/52



Backpropagation: 2D Convolution

Let’s start with chain rule
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Training CNNs Backpropagation

Backpropagation: 2D Convolution

We can keep on till finish with chain rule
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Backpropagation: 2D Convolution

We can use the same visualization as in pooling
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Or even a better visualization!

Applied Deep Learning Chapter 4: Convolutional NNs

© A. Bereyhi 2024 - 2025

18/52



Backpropagation: 2D Convolution

It’s again simply a convolution
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with filter being reversed up-to-down and right-to-left
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Training CNNs Backpropagation

Backpropagation: 2D Convolution

To backpropagate a convolutional layer, we convolve the output gradient
with the filter being reversed up-to-down and right-to-left. To match the
dimension, we simply apply zero-padding

Backpropagation through 2D Convolution

Let Z = Conv (X|W), where X is the input map, i.e., a matrix, W is filter and
7, is the output map. Assume that we know the gradient of loss R with respect
to the output map, i.e., VZR. Then, the gradient of loss R with respect to the
input map is

VxR = Conv (VZRWV)

where W is the up-to-down and left-to-right reverse of filter W
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Training CNNs Backpropagation

Backpropagation: 2D Convolution

+

What if the dimensions do not match?
The dimensions can only not match if

@ we do the forward convolution with a stride different from one

L, We said that this is simply resampling
L, We are going to discuss it later
L, For now assume that we do the convolution withstride one

@® we did no zero-padding in the forward convolution
L, We simply do zero-padding in backward convolution to match the dimensions
What about the gradient with respect to filter itself? Don’t we need it?

Let's check it out

+

Applied Deep Learning Chapter 4: Convolutional NNs © A. Bereyhi 2024 - 2025 21/52



Training CNNs Backpropagation

Backpropagation: Convolution Filter

We try it for our example: we have partial derivatives with respect to
convolved variables and want to compute the partial derivatives with respect to
weights in the filter
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Backpropagation: Convolution Filter

As always, we use chain rule
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Training CNNs Backpropagation

Backpropagation: Convolution Filter

It's another convolution with V7 1% being the filter!

\
1| 22 r3 |
\
- 1 |‘
h h A
\
\\ \‘\ \‘:‘
\
7| wg | zg p N OR | OR
\ oy ows | Oowyg
\ Vi
Al N
\\ \\ \“\‘; \\ \\ \“\‘:\
\ \ “‘
NNon| 2R | 2R
‘0 W 0z 022
\\\ |||
\\\ \ ~
AR oR ok
\‘: 0z3 0z4

Applied Deep Learning Chapter 4: Convolutional NNs

© A. Bereyhi 2024 - 2025

24/52



Training CNNs Backpropagation

Backpropagation: Convolution Filter

Once we backpropagate to the output of a convolutional layer, then
we can find the gradient with respect to convolution filter by convolv-
ing output gradient with the input map

Gradient w.r.t. Filters

Let Z = Conv (X|W), where X is the input map, i.e., a matrix, W is filter and
Z is the output map. Assume that we know gradiept of loss R with respect to
the output map, i.e., Vz R. Then, gradient of loss R with respect to the filter is

VwkR = Conv <X|VZR)

+ But we checked only 2D case! What about multi-channel case?!

- Well, we can simply do it by chain rule
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Training CNNs Backpropagation

Backpropagation: Multi-Channel Convolution

Lets start with a simple case: we have a C-channel input, i.e., a tensor input,
X and we compute a single feature map, i.e., a matrix, Z.

L, Filter W has also C' channels
Let’s denote channel c of input and filter by X[c] and W [c|; then, we can write

C
Z= Z Conv (X[c]|W]e])

c=1
Applied Deep Learning Chapter 4: Convolutional NNs
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Training CNNs

Backpropagation: Multi-Channel Convolution
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Training CNNs Backpropagation

Backpropagation: Multi-Channel Convolution

Channel ¢ of input is connected to the output map by a 2D convolution

L]
(L[]
Tl
Z

Wic]

So, we could say

VX[C]R = Conv <V2R|W[C])
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Training CNNs Backpropagation

Backpropagation: Multi-Channel Convolution

To backpropagate a convolutional layer with tensor input and matrix out-
put, we convolve the output gradient with the filter of each channel being
reversed up-to-down and right-to-left

Backpropagation through 2D Convolution

Let Z = Conv (X|W), where X is a C-channel input tensor, W is C'-channel
filter and Z is a single-channel output map, i.e., a matrix. Assume that we know
the gradient of loss R with respect to the output map, i.e., VZR Then, the
gradient of loss R with respect to input tensor is

Vxh = [Conv (VZRIW[1]) ..., Conv (V2 RIW[CT)]

Note that VXR is also a C-channel tensor
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Training CNNs

Backpropagation: Multi-Channel Convolution
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Training CNNs Backpropagation

Backpropagation: Multi-channel Convolution

We now go for the general case: we have a C-channel input tensor X and we
compute K -channel feature tensor Z

L, We have K filters W1, ..., Wg
L, Each filter has C channels

Let’s denote channel k of the output by Z; then, we can write

Z[k] = Conv (X|Wy)
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Training CNNs

Backpropagation: Multi-Channel Convolution
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Backpropagation: Multi-channel Convolution
We write the chain rule with a bit cheating: let’s denote the derivative of an
object A with respect to object Bas VA

L, if A and B are both scalars then its simple derivative

L, if Ais a scalar and B is a vector it’s gradient

L, if A and B are both vectors then its Jacobian

Lo...

When Z = f (X) and R = g (Z): chain rule says
VX}?L) = Vzﬁi o VxZ

where o is a kind of product

We now write the chain rule with this simplified notation
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Training CNNs

Backpropagation: Multi-Channel Convolution
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Backpropagation: Multi-Channel Convolution

The output tensor can be seen as K functions of the input tensor

Z[1] = H(X) ... Z[K]= [k (X)

So, the chain rule can be written as

fo:f = Vz[k]R o sz[k]

= i [Conv (Vz[k]RWVk[l]) ,...,Conv (Vz[k]R|Wk[C]>]

= [i Conv (Vz[k]fﬂWk ) i Conv (Vz[k]R|Wk[C]>
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Backpropagation: Multi-Channel Convolution

The backward pass is therefore

VxR = [Z Conv (Vz 1 RIW[1] ) Z Conv (Vz 1 BIW[C ])
k=1 k=1

Let’s look at a particular input channel ¢

Applied Deep Learning Chapter 4: Convolutional NNs © A. Bereyhi 2024 - 2025 36/52



Training CNNs

Backpropagation: Multi-Channel Convolution
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Training CNNs Backpropagation

Backpropagation: Multi-Channel Convolution

This is a new multi-channel convolution: let’s define K -channel filter Wl for
c=1,...,C as follows

wi = [Wl[c] . .WK[C]]

Then, channel c of VXR is the convolution of VZR with Wl
VX[C]R = Conv <VzR|W1)
Or shortly, we can write

VxR = Conv (VzR|WJ{, e ,WTC)
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Training CNNs

Backpropagation: Multi-Channel Convolution

This means that we can look at channel c of VXR as

!—H*/i\ﬂ,

[TTH

R B
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VzR ‘ VX[C]R
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Training CNNs Backpropagation

Backpropagation: Multi-Channel Convolution

To backpropagate to channel c of tensor input, we convolve the output
gradient tensor with the K -channel filter tensor that is constructed by
collecting the channel c of all K forward filters, each being reversed up-
to-down and right-to-left

Backpropagation through Multi-Channel Convolution

Let Z = Conv (X|W1,..., W), where X is a C-channel input tensor, W
is C-channel filter and Z. is a K -channel output tensor. Assume that we know
the gradient of loss R with respect to the output tensor, i.e., VzR. Then, the
gradient of loss R with respect to input tensor is

VxR = Conv (VZR\WI, . WL)

where W/ = [Wl[c] Wk [c]] is a K-channel filter
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Training CNNs Backpropagation

Backpropagation through Convolution: Summary

Moral of Story
We can always backpropagate through a convolutional layer with C' input
channels and K output channels by

@ multiply output gradient entry-wise with derivative of activation function

® convolve output gradient with C different K -channel filters computed by
rearranging of the K forward filters

To compute the gradient with respect to weights of channel c in filter k

L, convolve channel c of input tensor with channel k of output gradient

+ Sounds great! But what about cases with stride = 17!

- Well! we said we can decompose them as convolution/pooling with stride
1 + a resampling unit. We just need to learn how to backpropagate
through a resampling unit
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Training CNNs Backpropagation

Backpropagation: Downsampling

Let's again try an example: we have partial derivatives with respect to

down-sampled variables and want to compute the partial derivatives with

respect to input variables

Ty [ x2 | 3

Z = dSample (X|2)
L4 Ty Le b
Tr [ X8 | @9

21=T1 | 22=T3

23=x7 | 2a=x9
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Backpropagation: Downsampling

Let’s write with chain rule
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Training CNNs Backpropagation

Backpropagation: Downsampling

This is simply an upsampling with the same factor
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Backpropagation: Upsampling
Now, let’s look into upsampling: we have partial derivatives with respect to

up-sampled variables and want to compute the partial derivatives with respect
to input variables

21=1 | z9=0 | 23=T2
Z = uSample (X|2) 21 X2
24=0 25=0 26=0 D2%%Y
I3 T4
27=T3 | 28=0 | 29=%4
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Backpropagation: Downsampling

Let’s write with chain rule
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Backpropagation: Upsampling

This is downsampling with the same factor
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Backpropagation: Resampling

Backpropagation through Downsampling

To backpropagate through a downsampling unit with factor (stride) S we
up-sample the output gradient with factor S

Backpropagation through Upsampling

To backpropagate through an upsampling unit with factor (stride) S we
down-sample the output gradient with factor S
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Forward and Backpropagation in CNNs: Summary

To each forward action, there is a backward counterpart

In forward pass we do In backward pass we do
® forward FNN ® backward FNN
® pooling ® packward pooling ~ convolution

® convolution convolution with reversed filters

® ypsampling downsampling

® downsampling upsampling

Once we over with backward pass, we compute all required gradients from
forward and backward variables
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We Use Advanced Techniques

For FNN, we looked into advanced techniques such as
e Dropout and Regularization
L, to reduce the impact of overfitting
¢ |nput Normalization
L, to improve training with unbalanced datasets
e Batch Normalization
L, to make the training more stable against feature variations
® Data Preprocessing
L, to clean our training dataset

Same goes with CNNs

we should use all these methods for same purposes in CNNs
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Other Forms of Convolution
The convolution operation we considered in this chapter is often called
2D Convolution

because it screens input in a 2D fashion, i.e., left-to-right and up-to-down

2D convolution is the most popular form of convolution; however,
e we could have 1D convolutions
L, The filter only slides in one direction, i.e., left-to-right or up-to-down
L, This is useful with audio data where we slide the filter over time
® we could also have 3D convolutions

L, The filter slides in all three direction, i.e.,left-to-right, up-to-down and
front-to-back

L, This is useful with 3D images, e.g., 3D medical image of brain
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Training CNNs Final Notes

Other Forms of Convolution
2D Convolution

ID Convolution

0

3D Convolution

20

There are also other forms, e.g., depth-wise convolution

at the end of day, they all slide over input with some filter
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