Applied Deep Learning

Chapter 4: Convolutional Neural Networks

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Big Picture: What to Train

In CNNs we need to train all learnable parameters, i.e.,

- weights and biases of output FNN
- weights in the filters of convolutional layers
- if we use advanced pooling with weights; then, we should find them as well

To train, we get dataset $\mathbb{D}=\{(\mathbf{X}_b, \mathbf{v}_b): b=1,\ldots,B\}$ and train the CNN as

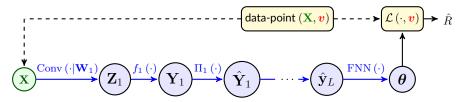
$$\mathbf{w}^{\star} = \underset{\mathbf{w}}{\operatorname{argmin}} \, \hat{R}(\mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmin}} \, \frac{1}{B} \sum_{b=1}^{B} \mathcal{L}(\boldsymbol{\theta}_{b}, \boldsymbol{v}_{b}) \tag{Training}$$

where $m{ heta}_b = ext{CNN}\left(\mathbf{X}_b|\mathbf{w}
ight)$ for the tensor-type data-point \mathbf{X}_b with label $m{v}_b$

- → This means we should be able to pass forward and backward

Computation Graph

Computation graph for single data-point ${f X}$ and its true label ${m v}$ is as follows



For simplicity, let's assume that we are doing basic SGD

- → We should then pass backward to compute gradient

Let's try both directions

Forward Pass over CNN

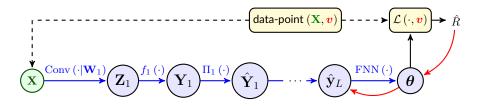
The forward pass is what we learned in the last section

- We pass X through first convolution to get Z₁
- We activate Z₁ to get Y₁
- We pool entries of Y_1 and get \hat{Y}_1
- We flatten and pass forward through the output FNN

Once we are over, we have

- □ all convolution, activated and pooled values in convolutional layers
- \downarrow all affine and activated values in the FNN

Backward Pass



We now want to backpropagate

- $\,\,\,\,\,\,\,\,$ We first compute $abla_{m{ heta}}\hat{R}$

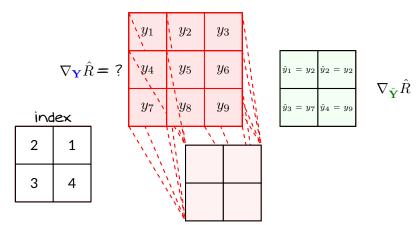
At this point, we sort $abla_{\hat{\mathbf{y}}_L}\hat{R}$ in tensor by reversing the flattening

we now have
$$abla_{\hat{\mathbf{Y}}_L}\hat{R}$$

We only need to learn how to backpropagate through pooling and convolutional layers and then we can complete the backward pass!

Backpropagate through Pooling: Max-Pooling

Let's start with a simple example: in the following pooling layer, we have partial derivatives with respect to pooled variables and want to compute the partial derivatives with respect to input of pooling layer



Backpropagation: Max-Pooling

We can use chain rule

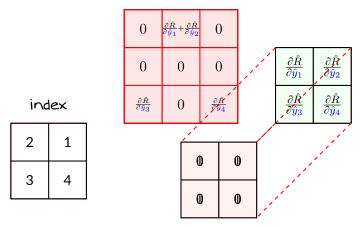
$$\begin{split} \frac{\partial \hat{R}}{\partial y_1} &= \sum_{i=1}^4 \frac{\partial \hat{R}}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial y_1} = 0 \\ \frac{\partial \hat{R}}{\partial y_2} &= \sum_{i=1}^4 \frac{\partial \hat{R}}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial y_2} = \frac{\partial \hat{R}}{\partial \hat{y}_1} + \frac{\partial \hat{R}}{\partial \hat{y}_2} \\ \frac{\partial \hat{R}}{\partial y_3} &= \sum_{i=1}^4 \frac{\partial \hat{R}}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial y_3} = 0 \\ \vdots \end{split}$$

$$\frac{\partial \hat{R}}{\partial y_7} = \sum_{i=1}^4 \frac{\partial \hat{R}}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial y_7} = \frac{\partial \hat{R}}{\partial \hat{y}_3}$$
$$\frac{\partial \hat{R}}{\partial y_8} = \sum_{i=1}^4 \frac{\partial \hat{R}}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial y_8} = 0$$
$$\frac{\partial \hat{R}}{\partial y_9} = \sum_{i=1}^4 \frac{\partial \hat{R}}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial y_9} = \frac{\partial \hat{R}}{\partial \hat{y}_4}$$

Let's see its visualization

Backpropagation: Max-Pooling

Each derivative in green map gets multiplied with its filter and added to corresponding entries on blue map



Backpropagate through Pooling: Mean-Pooling

Lets now consider mean-pooling: we have partial derivatives with respect to pooled variables and want to compute the partial derivatives with respect to input of pooling layer



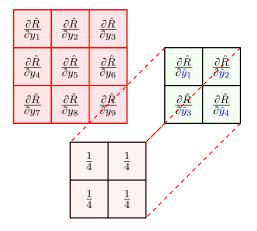
Backward Pass: Mean-Pooling

We again use chain rule

$$\begin{split} \frac{\partial \hat{R}}{\partial y_1} &= \sum_{i=1}^4 \frac{\partial \hat{R}}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial y_1} = \frac{1}{4} \frac{\partial \hat{R}}{\partial \hat{y}_1} \\ \frac{\partial \hat{R}}{\partial y_2} &= \sum_{i=1}^4 \frac{\partial \hat{R}}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial y_2} = \frac{1}{4} \frac{\partial \hat{R}}{\partial \hat{y}_1} + \frac{1}{4} \frac{\partial \hat{R}}{\partial \hat{y}_2} \\ \vdots \\ \frac{\partial \hat{R}}{\partial y_5} &= \sum_{i=1}^4 \frac{\partial \hat{R}}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial y_5} = \frac{1}{4} \frac{\partial \hat{R}}{\partial \hat{y}_1} + \frac{1}{4} \frac{\partial \hat{R}}{\partial \hat{y}_2} + \frac{1}{4} \frac{\partial \hat{R}}{\partial \hat{y}_3} + \frac{1}{4} \frac{\partial \hat{R}}{\partial \hat{y}_4} \\ \vdots \\ \frac{\partial \hat{R}}{\partial y_9} &= \sum_{i=1}^4 \frac{\partial \hat{R}}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial y_9} = \frac{1}{4} \frac{\partial \hat{R}}{\partial \hat{y}_4} \end{split}$$

Backward Pass: Mean-Pooling

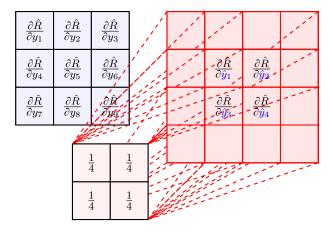
It has same visualization: the filter is however this time fixed



But we can visualize it even better!

Backward Pass: Mean-Pooling

In fact, this is simply a convolution



Backpropagation through Pooling: Summary

Depending on pooling function, backpropagation can be different

Moral of Story

Backpropagation through pooling can be done by a convolution-type operation

Backpropagation through Convolution: Activation

Convolutional layer has two operations

The entry-wise activation is readily backpropagate: say we have

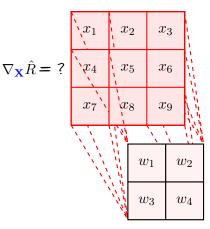
$$\mathbf{Y} = f\left(\mathbf{Z}\right)$$

Then, we can backpropagate as in the fully-connected FNNs

$$\nabla_{\mathbf{Z}}\hat{R} = \nabla_{\mathbf{Y}}\hat{R} \odot \dot{f}(\mathbf{Z})$$

Now, let's look at linear convolution!

Let's find it out through a simple example: in the following convolutional layer, we have partial derivatives with respect to convolved variables and want to compute the partial derivatives with respect to input of convolutional layer



z_1	z_2
z_3	z_4

 $\nabla_{\mathbf{Z}}\hat{R}$

Let's start with chain rule

$$\frac{\partial \hat{R}}{\partial x_{1}} = \sum_{i=1}^{4} \frac{\partial \hat{R}}{\partial z_{i}} \frac{\partial z_{i}}{\partial x_{1}} = w_{1} \frac{\partial \hat{R}}{\partial z_{1}}$$

$$\frac{\partial \hat{R}}{\partial x_{2}} = \sum_{i=1}^{4} \frac{\partial \hat{R}}{\partial z_{i}} \frac{\partial z_{i}}{\partial x_{2}} = w_{2} \frac{\partial \hat{R}}{\partial z_{1}} + w_{1} \frac{\partial \hat{R}}{\partial z_{2}}$$

$$\frac{\partial \hat{R}}{\partial x_{3}} = \sum_{i=1}^{4} \frac{\partial \hat{R}}{\partial z_{i}} \frac{\partial z_{i}}{\partial x_{3}} = w_{2} \frac{\partial \hat{R}}{\partial z_{2}}$$

$$\frac{\partial \hat{R}}{\partial x_{4}} = \sum_{i=1}^{4} \frac{\partial \hat{R}}{\partial z_{i}} \frac{\partial z_{i}}{\partial x_{4}} = w_{3} \frac{\partial \hat{R}}{\partial z_{1}} + w_{1} \frac{\partial \hat{R}}{\partial z_{3}}$$

$$\frac{\partial \hat{R}}{\partial x_{5}} = \sum_{i=1}^{4} \frac{\partial \hat{R}}{\partial z_{i}} \frac{\partial z_{i}}{\partial x_{5}} = w_{4} \frac{\partial \hat{R}}{\partial z_{1}} + w_{3} \frac{\partial \hat{R}}{\partial z_{2}} + w_{2} \frac{\partial \hat{R}}{\partial z_{3}} + w_{1} \frac{\partial \hat{R}}{\partial z_{4}}$$

We can keep on till finish with chain rule

$$\frac{\partial \hat{R}}{\partial x_{6}} = \sum_{i=1}^{4} \frac{\partial \hat{R}}{\partial z_{i}} \frac{\partial z_{i}}{\partial x_{6}} = w_{4} \frac{\partial \hat{R}}{\partial z_{2}} + w_{2} \frac{\partial \hat{R}}{\partial z_{4}}$$

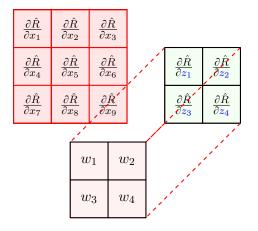
$$\frac{\partial \hat{R}}{\partial x_{7}} = \sum_{i=1}^{4} \frac{\partial \hat{R}}{\partial z_{i}} \frac{\partial z_{i}}{\partial x_{7}} = w_{3} \frac{\partial \hat{R}}{\partial z_{3}}$$

$$\frac{\partial \hat{R}}{\partial x_{8}} = \sum_{i=1}^{4} \frac{\partial \hat{R}}{\partial z_{i}} \frac{\partial z_{i}}{\partial x_{8}} = w_{4} \frac{\partial \hat{R}}{\partial z_{3}} + w_{3} \frac{\partial \hat{R}}{\partial z_{4}}$$

$$\frac{\partial \hat{R}}{\partial x_{9}} = \sum_{i=1}^{4} \frac{\partial \hat{R}}{\partial z_{i}} \frac{\partial z_{i}}{\partial x_{9}} = w_{4} \frac{\partial \hat{R}}{\partial z_{4}}$$

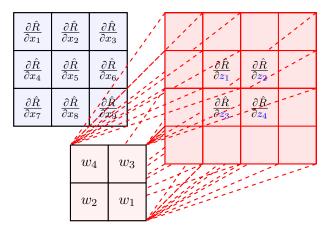
Let's look at the visualization

We can use the same visualization as in pooling



Or even a better visualization!

It's again simply a convolution



with filter being reversed up-to-down and right-to-left

To backpropagate a convolutional layer, we convolve the output gradient with the filter being reversed up-to-down and right-to-left. To match the dimension, we simply apply zero-padding

Backpropagation through 2D Convolution

Let $\mathbf{Z} = \operatorname{Conv}(\mathbf{X}|\mathbf{W})$, where \mathbf{X} is the input map, i.e., a matrix, \mathbf{W} is filter and \mathbf{Z} is the output map. Assume that we know the gradient of loss \hat{R} with respect to the output map, i.e., $\nabla_{\mathbf{Z}}\hat{R}$. Then, the gradient of loss \hat{R} with respect to the input map is

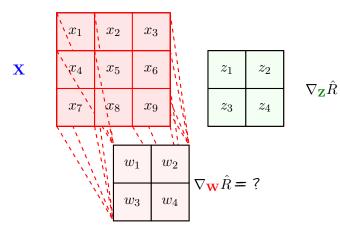
$$\nabla_{\mathbf{X}}\hat{R} = \operatorname{Conv}\left(\nabla_{\mathbf{Z}}\hat{R}|\mathbf{\overset{\vee}{W}}\right)$$

where \mathbf{W} is the up-to-down and left-to-right reverse of filter \mathbf{W}

- + What if the dimensions do not match?
- The dimensions can only not match if
 - 1 we do the forward convolution with a stride different from one
 - We said that this is simply resampling

 - → For now assume that we do the convolution with stride one
 - 2 we did no zero-padding in the forward convolution
 - We simply do zero-padding in backward convolution to match the dimensions
- + What about the gradient with respect to filter itself? Don't we need it?
- Let's check it out

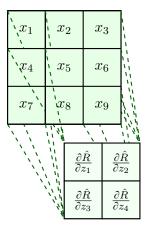
We try it for our example: we have partial derivatives with respect to convolved variables and want to compute the partial derivatives with respect to weights in the filter



As always, we use chain rule

$$\frac{\partial \hat{R}}{\partial \mathbf{w}_{1}} = \sum_{i=1}^{4} \frac{\partial \hat{R}}{\partial z_{i}} \frac{\partial z_{i}}{\partial \mathbf{w}_{1}} = x_{1} \frac{\partial \hat{R}}{\partial z_{1}} + x_{2} \frac{\partial \hat{R}}{\partial z_{2}} + x_{4} \frac{\partial \hat{R}}{\partial z_{3}} + x_{5} \frac{\partial \hat{R}}{\partial z_{4}}
\frac{\partial \hat{R}}{\partial \mathbf{w}_{2}} = \sum_{i=1}^{4} \frac{\partial \hat{R}}{\partial z_{i}} \frac{\partial z_{i}}{\partial \mathbf{w}_{2}} = x_{2} \frac{\partial \hat{R}}{\partial z_{1}} + x_{3} \frac{\partial \hat{R}}{\partial z_{2}} + x_{5} \frac{\partial \hat{R}}{\partial z_{3}} + x_{6} \frac{\partial \hat{R}}{\partial z_{4}}
\frac{\partial \hat{R}}{\partial \mathbf{w}_{3}} = \sum_{i=1}^{4} \frac{\partial \hat{R}}{\partial z_{i}} \frac{\partial z_{i}}{\partial \mathbf{w}_{3}} = x_{4} \frac{\partial \hat{R}}{\partial z_{1}} + x_{5} \frac{\partial \hat{R}}{\partial z_{2}} + x_{7} \frac{\partial \hat{R}}{\partial z_{3}} + x_{8} \frac{\partial \hat{R}}{\partial z_{4}}
\frac{\partial \hat{R}}{\partial \mathbf{w}_{4}} = \sum_{i=1}^{4} \frac{\partial \hat{R}}{\partial z_{i}} \frac{\partial z_{i}}{\partial \mathbf{w}_{4}} = x_{5} \frac{\partial \hat{R}}{\partial z_{1}} + x_{6} \frac{\partial \hat{R}}{\partial z_{2}} + x_{8} \frac{\partial \hat{R}}{\partial z_{3}} + x_{9} \frac{\partial \hat{R}}{\partial z_{4}}$$

It's another convolution with $\nabla_{\mathbf{Z}}\hat{R}$ being the filter!



$\frac{\partial \hat{R}}{\partial w_1}$	$\frac{\partial \hat{R}}{\partial w_2}$
$\frac{\partial \hat{R}}{\partial w_3}$	$\frac{\partial \hat{R}}{\partial w_4}$

Once we backpropagate to the output of a convolutional layer, then we can find the gradient with respect to convolution filter by convolving output gradient with the input map

Gradient w.r.t. Filters

Let $\mathbf{Z} = \operatorname{Conv}(\mathbf{X}|\mathbf{W})$, where \mathbf{X} is the input map, i.e., a matrix, \mathbf{W} is filter and \mathbf{Z} is the output map. Assume that we know gradient of loss \hat{R} with respect to the output map, i.e., $\nabla_{\mathbf{Z}}\hat{R}$. Then, gradient of loss \hat{R} with respect to the filter is

$$\nabla_{\mathbf{W}} \hat{R} = \operatorname{Conv}\left(\mathbf{X} | \nabla_{\mathbf{Z}} \hat{R}\right)$$

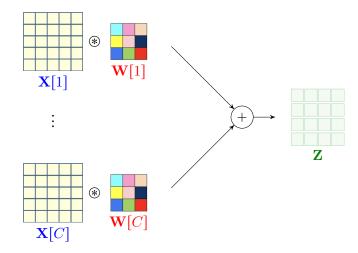
- + But we checked only 2D case! What about multi-channel case?!
- Well, we can simply do it by chain rule

Lets start with a simple case: we have a C-channel input, i.e., a tensor input, $\mathbf X$ and we compute a single feature map, i.e., a matrix, $\mathbf Z$

ightharpoonup Filter **W** has also C channels

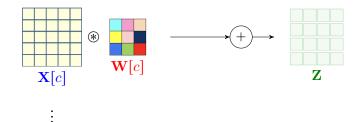
Let's denote channel c of input and filter by $\mathbf{X}[c]$ and $\mathbf{W}[c]$; then, we can write

$$\mathbf{Z} = \sum_{c=1}^{C} \operatorname{Conv}\left(\mathbf{X}[c] \middle| \mathbf{W}[c]\right)$$



Channel c of input is connected to the output map by a 2D convolution

:



So, we could say

$$\nabla_{\mathbf{X}[c]}\hat{R} = \operatorname{Conv}\left(\nabla_{\mathbf{Z}}\hat{R}|\mathbf{\check{W}}[c]\right)$$

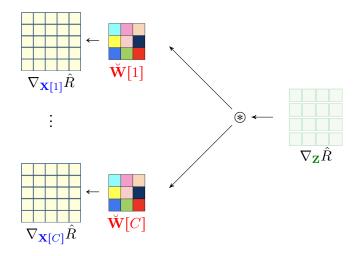
To backpropagate a convolutional layer with tensor input and matrix output, we convolve the output gradient with the filter of each channel being reversed up-to-down and right-to-left

Backpropagation through 2D Convolution

Let $\mathbf{Z} = \operatorname{Conv}(\mathbf{X}|\mathbf{W})$, where \mathbf{X} is a C-channel input tensor, \mathbf{W} is C-channel filter and \mathbf{Z} is a single-channel output map, i.e., a matrix. Assume that we know the gradient of loss \hat{R} with respect to the output map, i.e., $\nabla_{\mathbf{Z}}\hat{R}$. Then, the gradient of loss \hat{R} with respect to input tensor is

$$\nabla_{\mathbf{X}} \hat{R} = \left[\operatorname{Conv} \left(\nabla_{\mathbf{Z}} \hat{R} | \mathbf{\check{W}}[1] \right), \dots, \operatorname{Conv} \left(\nabla_{\mathbf{Z}} \hat{R} | \mathbf{\check{W}}[C] \right) \right]$$

Note that $\nabla_{\mathbf{x}} \hat{R}$ is also a C-channel tensor

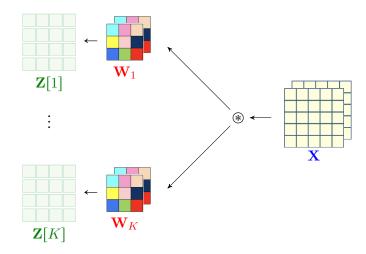


We now go for the general case: we have a C-channel input tensor $\mathbf X$ and we compute K-channel feature tensor $\mathbf Z$

- \rightarrow Each filter has C channels

Let's denote channel k of the output by \mathbb{Z} ; then, we can write

$$\mathbf{Z}[k] = \operatorname{Conv}\left(\mathbf{X}|\mathbf{W}_{k}\right)$$



We write the chain rule with a bit cheating: let's denote the derivative of an object A with respect to object B as $\nabla_B A$

- $\, \, \downarrow \, \,$ if A and B are both scalars then its simple derivative
- \downarrow if A and B are both vectors then its Jacobian

↳ ...

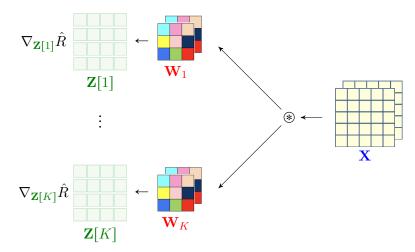
When
$$\mathbf{Z}=f\left(\mathbf{X}\right)$$
 and $\hat{R}=g\left(\mathbf{Z}\right)$: chain rule says

$$\nabla_{\mathbf{X}}\hat{R} = \nabla_{\mathbf{Z}}\hat{R} \circ \nabla_{\mathbf{X}}\mathbf{Z}$$

where \circ is a kind of product

We now write the chain rule with this simplified notation

We do know
$$\nabla_{\mathbf{Z}} \hat{R} = [\nabla_{\mathbf{Z}[1]} \hat{R}, \dots, \nabla_{\mathbf{Z}[K]} \hat{R}]$$



The output tensor can be seen as K functions of the input tensor

$$\mathbf{Z}[1] = f_1(\mathbf{X}) \qquad \dots \qquad \mathbf{Z}[K] = f_K(\mathbf{X})$$

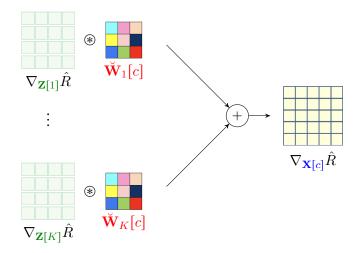
So, the chain rule can be written as

$$\begin{split} \nabla_{\mathbf{X}} \hat{R} &= \sum_{k=1}^{K} \underbrace{\nabla_{\mathbf{Z}[k]} \hat{R} \circ \nabla_{\mathbf{X}} \mathbf{Z}[k]}_{\text{what we calculated for single output map}} \\ &= \sum_{k=1}^{K} \left[\operatorname{Conv} \left(\nabla_{\mathbf{Z}[k]} \hat{R} | \check{\mathbf{W}}_{k}[1] \right), \dots, \operatorname{Conv} \left(\nabla_{\mathbf{Z}[k]} \hat{R} | \check{\mathbf{W}}_{k}[C] \right) \right] \\ &= \left[\sum_{k=1}^{K} \operatorname{Conv} \left(\nabla_{\mathbf{Z}[k]} \hat{R} | \check{\mathbf{W}}_{k}[1] \right), \dots, \sum_{k=1}^{K} \operatorname{Conv} \left(\nabla_{\mathbf{Z}[k]} \hat{R} | \check{\mathbf{W}}_{k}[C] \right) \right] \end{split}$$

The backward pass is therefore

$$\nabla_{\mathbf{X}} \hat{R} = \left[\sum_{k=1}^{K} \operatorname{Conv} \left(\nabla_{\mathbf{Z}[k]} \hat{R} | \mathbf{\check{W}}_{k}[1] \right) \dots \sum_{k=1}^{K} \operatorname{Conv} \left(\nabla_{\mathbf{Z}[k]} \hat{R} | \mathbf{\check{W}}_{k}[C] \right) \right]$$

Let's look at a particular input channel c



This is a new multi-channel convolution: let's define K-channel filter \mathbf{W}_c^\dagger for $c=1,\ldots,C$ as follows

$$\mathbf{W}_c^{\dagger} = \left[\mathbf{\breve{W}}_1[c] \dots \mathbf{\breve{W}}_K[c] \right]$$

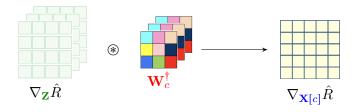
Then, channel c of $\nabla_{\mathbf{X}}\hat{R}$ is the convolution of $\nabla_{\mathbf{Z}}\hat{R}$ with \mathbf{W}_c^{\dagger}

$$\nabla_{\mathbf{X}[c]}\hat{R} = \operatorname{Conv}\left(\nabla_{\mathbf{Z}}\hat{R}|\mathbf{W}_{c}^{\dagger}\right)$$

Or shortly, we can write

$$\nabla_{\mathbf{X}}\hat{R} = \operatorname{Conv}\left(\nabla_{\mathbf{Z}}\hat{R}|\mathbf{W}_{1}^{\dagger},\dots,\mathbf{W}_{C}^{\dagger}\right)$$

This means that we can look at channel c of $\nabla_{\mathbf{X}}\hat{R}$ as



To backpropagate to channel c of tensor input, we convolve the output gradient tensor with the K-channel filter tensor that is constructed by collecting the channel c of all K forward filters, each being reversed upto-down and right-to-left

Backpropagation through Multi-Channel Convolution

Let $\mathbf{Z} = \operatorname{Conv}(\mathbf{X}|\mathbf{W}_1,\dots,\mathbf{W}_K)$, where \mathbf{X} is a C-channel input tensor, \mathbf{W}_k is C-channel filter and \mathbf{Z} is a K-channel output tensor. Assume that we know the gradient of loss \hat{R} with respect to the output tensor, i.e., $\nabla_{\mathbf{Z}}\hat{R}$. Then, the gradient of loss \hat{R} with respect to input tensor is

$$\nabla_{\mathbf{X}}\hat{R} = \operatorname{Conv}\left(\nabla_{\mathbf{Z}}\hat{R}|\mathbf{W}_{1}^{\dagger},\dots,\mathbf{W}_{C}^{\dagger}\right)$$

where
$$\mathbf{W}_c^\dagger = \left[reve{\mathbf{W}}_1[c] \ldots reve{\mathbf{W}}_K[c] \right]$$
 is a K -channel filter

Backpropagation through Convolution: Summary

Moral of Story

We can always backpropagate through a convolutional layer with C input channels and K output channels by

- multiply output gradient entry-wise with derivative of activation function
- 2 convolve output gradient with C different K-channel filters computed by rearranging of the K forward filters

To compute the gradient with respect to weights of channel c in filter k

- + Sounds great! But what about cases with stride \neq 1?!
- Well! we said we can decompose them as convolution/pooling with stride
 1 + a resampling unit. We just need to learn how to backpropagate
 through a resampling unit

Let's again try an example: we have partial derivatives with respect to down-sampled variables and want to compute the partial derivatives with respect to input variables

x_1	x_2	x_3
x_4	x_5	x_6
x_7	x_8	x_9

$$\mathbf{Z} = dSample\left(\mathbf{X}|2\right)$$

$z_1 = x_1$	$z_2 = x_3$
$z_3 = x_7$	z ₄ =x ₉

Let's write with chain rule

$$\frac{\partial \hat{R}}{\partial x_1} = \sum_{i=1}^4 \frac{\partial \hat{R}}{\partial z_i} \frac{\partial z_i}{\partial x_1} = \frac{\partial \hat{R}}{\partial z_1}$$

$$\frac{\partial \hat{R}}{\partial x_2} = \sum_{i=1}^4 \frac{\partial \hat{R}}{\partial z_i} \frac{\partial z_i}{\partial x_2} = 0$$

$$\frac{\partial \hat{R}}{\partial x_3} = \sum_{i=1}^4 \frac{\partial \hat{R}}{\partial z_i} \frac{\partial z_i}{\partial x_3} = \frac{\partial \hat{R}}{\partial z_2}$$

$$\frac{\partial \hat{R}}{\partial x_4} = \sum_{i=1}^4 \frac{\partial \hat{R}}{\partial z_i} \frac{\partial z_i}{\partial x_4} = 0$$

$$\vdots$$

$$\frac{\partial \hat{R}}{\partial x_7} = \sum_{i=1}^4 \frac{\partial \hat{R}}{\partial z_i} \frac{\partial z_i}{\partial x_7} = \frac{\partial \hat{R}}{\partial z_3}$$
$$\frac{\partial \hat{R}}{\partial x_8} = \sum_{i=1}^4 \frac{\partial \hat{R}}{\partial z_i} \frac{\partial z_i}{\partial x_8} = 0$$
$$\frac{\partial \hat{R}}{\partial x_9} = \sum_{i=1}^4 \frac{\partial \hat{R}}{\partial z_i} \frac{\partial z_i}{\partial x_9} = \frac{\partial \hat{R}}{\partial z_4}$$

This is simply an upsampling with the same factor

$\frac{\partial \hat{R}}{\partial z_1}$	0	$\frac{\partial \hat{R}}{\partial z_2}$
0	0	0
$\frac{\partial \hat{R}}{\partial z_3}$	0	$\frac{\partial \hat{R}}{\partial z_4}$

uSample
$$\left(\nabla_{\mathbf{Z}}\hat{R}|2\right)$$

$\frac{\partial \hat{R}}{\partial z_1}$	$\frac{\partial \hat{R}}{\partial z_2}$
$\frac{\partial \hat{R}}{\partial z_3}$	$\frac{\partial \hat{R}}{\partial z_4}$

Backpropagation: Upsampling

Now, let's look into upsampling: we have partial derivatives with respect to up-sampled variables and want to compute the partial derivatives with respect to input variables

$z_1 = x_1$	z ₂ =0	$z_3 = x_2$
z ₄ =0	z ₅ =0	z ₆ =0
$z_7 = x_3$	z ₈ =0	z ₉ =x ₄

$$\mathbf{Z} = uSample\left(\mathbf{X}|2\right)$$

x_1	x_2
x_3	x_4

Let's write with chain rule

$$\frac{\partial \hat{R}}{\partial x_1} = \sum_{i=1}^{9} \frac{\partial \hat{R}}{\partial z_i} \frac{\partial z_i}{\partial x_1} = \frac{\partial \hat{R}}{\partial z_1}$$

$$\frac{\partial \hat{R}}{\partial x_2} = \sum_{i=1}^{9} \frac{\partial \hat{R}}{\partial z_i} \frac{\partial z_i}{\partial x_2} = \frac{\partial \hat{R}}{\partial z_3}$$

$$\frac{\partial \hat{R}}{\partial x_3} = \sum_{i=1}^{9} \frac{\partial \hat{R}}{\partial z_i} \frac{\partial z_i}{\partial x_3} = \frac{\partial \hat{R}}{\partial z_7}$$

$$\frac{\partial \hat{R}}{\partial x_4} = \sum_{i=1}^{9} \frac{\partial \hat{R}}{\partial z_i} \frac{\partial z_i}{\partial x_4} = \frac{\partial \hat{R}}{\partial z_9}$$

Backpropagation: Upsampling

This is downsampling with the same factor

$\frac{\partial \hat{R}}{\partial z_1}$	$\frac{\partial \hat{R}}{\partial z_2}$	$\frac{\partial \hat{R}}{\partial z_3}$
$\frac{\partial \hat{R}}{\partial z_4}$	$rac{\partial \hat{R}}{\partial z_5}$	$\frac{\partial \hat{R}}{\partial z_6}$
$\frac{\partial \hat{R}}{\partial z_7}$	$\frac{\partial \hat{R}}{\partial z_8}$	$\frac{\partial \hat{R}}{\partial z_9}$

$$dSample \left(\nabla_{\mathbf{Z}} \hat{R} | 2 \right)$$

$\frac{\partial \hat{R}}{\partial z_1}$	$\frac{\partial \hat{R}}{\partial z_3}$
$\frac{\partial \hat{R}}{\partial z_7}$	$\frac{\partial \hat{R}}{\partial z_9}$

Backpropagation: Resampling

Backpropagation through Downsampling

To backpropagate through a downsampling unit with factor (stride) S we up-sample the output gradient with factor S

Backpropagation through Upsampling

To backpropagate through an upsampling unit with factor (stride) S we down-sample the output gradient with factor S

Forward and Backpropagation in CNNs: Summary

To each forward action, there is a backward counterpart

In forward pass we do

- forward FNN
- pooling
- convolution
- upsampling
- downsampling

In backward pass we do

- backward FNN
- backward pooling ~ convolution
- convolution with reversed filters
- downsampling
- upsampling

Once we over with backward pass, we compute all required gradients from forward and backward variables

We Use Advanced Techniques

For FNN, we looked into advanced techniques such as

- Dropout and Regularization
 - ↓ to reduce the impact of overfitting
- Input Normalization
- Batch Normalization
 - ↓ to make the training more stable against feature variations
- Data Preprocessing

Same goes with CNNs

we should use all these methods for same purposes in CNNs

Other Forms of Convolution

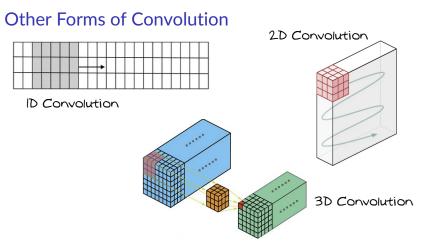
The convolution operation we considered in this chapter is often called

2D Convolution

because it screens input in a 2D fashion, i.e., left-to-right and up-to-down

2D convolution is the most popular form of convolution; however,

- we could have 1D convolutions
 - → The filter only slides in one direction, i.e., left-to-right or up-to-down
- we could also have 3D convolutions
 - The filter slides in all three direction, i.e.,left-to-right, up-to-down and front-to-back
 - → This is useful with 3D images, e.g., 3D medical image of brain



There are also other forms, e.g., depth-wise convolution

at the end of day, they all slide over input with some filter