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Components of CNNs

CNNs consist of three major components
@ Convolutional layers

L, they are the key component
L, they extract features from input by sweeping filters over input

@ Pooling layers
L, they smooth the extracted features

® Output FNN
L, they learn label from final extracted features

We now go through each of these components

Applied Deep Learning Chapter 4: Convolutional NNs © A. Bereyhi 2024 - 2025

2/42



Convolution: 2D Arrays

We already know the definition of convolution for 2D arrays
2D Convolution

Let X € RN*M pe the input matrix: convolution of X by filter/kernel
W e RF*F with stride S is denoted by

Z = Conv (X|W, 5)

The matrix Z has | (N — F)/S| + 1rowsand |(M — F)/S| + 1 columns and
its entry at row i and column j is computed as

Z [Z,j] = sum (W O) X@j)
with X; ; being the corresponding ' x F' sub-matrix of X, i.e.,

Xij=X[1+GE-1)S:F+(GE-1)S,1+(G-1)S:F+(—-1)5]
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Convolution: 2D Arrays

Let’s see an example: assume X € R**% and W e R2*2

oo

N\

T Xl,l — sum(XLl ® W)

If we convolve with stride S = 1

Z1y 1o Z13 Zia
Z=\|221 Zoo Zoz Zay
Z31 2432 433 434

Let’s verify the dimensions of Z

#rows=|(4—-2)/1]+1=3  #columns=|(5—-2)/1| +1=4
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Components of CNNs Convolution

Convolution: Numerical Example
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Convolution: 2D Arrays

Let’s see an example: assume X € R**% and W e R2*2

X11 Xio| X17§(1 X4 Xi5

X Xo1 Xopo| [Xoa %(2,4 Xos ® W — [Wl,l W1,2]
X?”X X392 X3,§( X34 X35 Wo1 Wap
X4,1 2’3(4,2 Xy3 2’%(4,4 X, \

Let’s verify the dimensions of Z

#rows=|(4—2)/2|+1=2  #columns=|(5—2)/2|+1=2
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Components of CNNs Convolution

Convolution: Numerical Example
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Components of CNNs Convolution

Convolution: Downsampling

Let’s compare the result with strides 1 and 2

2.1

2.1

1.7

2.5

This is downsampling with factor 2!
Downsampling

Downsampling with factor f drops the last f — 1 of every

dSample (Z|f)
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Components of CNNs

Convolution: Downsampling

Downsampling with factor 2 dSample (Z|2) Downsampling with factor 3
dSample (Z|3)
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Components of CNNs Convolution

Convolution: Downsampling

Let’s compare the result with strides 1 and 2

21| 21

1.7 | 2.5

Stride as Downsampling

We can look at stride S as downsampling with factor S, i.e.,

Conv (X|W, S) = dSample (Conv (X|W, 1) |5)
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Components of CNNs Convolution

Convolution: Downsampling

So, we can make an agreement: by default we consider unit stride, i.e., S = 1,
i.e., we drop S in convolution from now on

Conv (X|W) = Conv (X|W, S =1)
Whenever we need to convolve with stride S > 1
We add an downsampling next to the convolution
+ Why do we do this?

- WEe'll see how easy things get when we want to backpropagate; however,
it also helps to easily define having a stride smaller than one!

Applied Deep Learning Chapter 4: Convolutional NNs © A. Bereyhi 2024 - 2025 11/42



Convolution: Upsampling

We can do the sampling in other way;, i.e., add some zeros

.:H r=

Upsampling with factor f adds f — 1 rows and columns of zeros after every row
and column

Upsampling

uSample (Z|f)
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Components of CNNs Convolution

Convolution with Fractional Stride

+ Where do we use upsampling?

- If we want to increase the size of the feature map

To increase the size of the feature map, we can do following

"IN ﬁﬁ cons (1)
X

X

This is called fractionally-strided convolution: for S < 1 with 1/S being integer

Conv (X|W, S) = Conv (uSample (X|1/5) [W)
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Convolution: Resampling

We can extend stride to any fraction S = 55/5; with integer S| and Ss: we
first do upsampling with factor S1 and then downsampling with factor S

Moral of Story

Convolution with stride is equivalent with

convolution with resampling

Note that the order of resampling differs
e Upsampling is done always before convolution

® Downsampling is done always after convolution

The above interpretation of stride helps a lot in backpropagation!
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Convolution: Padding
In our definition, feature map Z has smaller dimensions than X even with
stride S = 1. We can play with dimensions of Z via zero-padding

+ Why should we be interested in changing dimensions of Z.?

- WEe'll see multiple reasons: a simple one is that we may like to have a
same-size feature map to sketch it as an image and compare it to input

For instance in MNIST, we want to sketch the feature map as a 28 x 28 image
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Components of CNNs Convolution

Convolution: Zero-Padding

The trick to resize feature map is to pad zeros at boundaries

P4

B,
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Components of CNNs Convolution

Convolution: Zero-Padding

Typically we pad with widths smaller than filter dimension F'
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Convolution: Zero-Padding
With zero-padding, the dimensions of feature map can be modified: say the
input has N rows and M columns; then, at the feature map we have
* |(N+ P, +P,—F)/S|+ 1rows
* |((M+ P+ P —F)/S|+1columns
In practice, we pad symmetrically, i.e., P, = P, = P, = P

As we see the dimensions of feature map is a function of
input dimensions, stride, padding length and filter size

It is thus typical that we get some of these items not specified, e.g., we might
get input and output dimensions, stride and filter size but not the padding length

we can find the padding length from other specifications
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Components of CNNs Convolution

Example: Stride = 2 and Padding
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Convolution: Activation

Convolution is a spatial linear transform on the input image
we should activate this linear transform if we go deep
A convolutional layer can hence be formally defined as below

Convolutional Layer

Convolutional layer with filter W € R, bias b and activation function f (-)
transforms the input map X to the activated feature map Y as follows:

@ it first applies linear convolution to find Z

Z = Conv (XlW) +b -+ applied entry-wise

@ it then activates Z

Y = f (Z) f () applied entry-wise
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Components of CNNs Convolution

Convolution: Activation

g ®W+bh——

+ We did not discuss bias before!

It's just a scalar added to all entries
+ What kinds of activation are used in CNNs?

Similar to FNNs with ReLU being the popular one
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Components of CNNs Convolution

Convolution: Multi-Channel Input

What we discussed up to now holds for single-channel images: these are gray
images that can be represented by 2D pixel arrays, e.g., MNIST images

In practice, we have multi-channel inputs; for instance, RGB images have
three channels: an N x M color image is stored in the form of three N x M
matrices, one storing red map, another green map, and the other blue map

4
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Recap: 3D Tensors
We can think of multi-channel input as a tensor of order 3, i.e., a 3D array
Reminder: Tensor of Order 3

Tensor X € RE*N*M js g collection of C' matrices each of size N x M
For instance, an N x M pixel RGB image is tensor in R3*N*M

M

A
Y
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Components of CNNs Convolution

Convolution: 3D Arrays

+ How can we extend convolution to these 3D tensors?
- We can look at 3D tensors as stack of 2D arrays

Let’s try a visual example: we want to convolve RGB image with filter W

convolve with

Filter should have the same number of channels, i.e., W € R3* "I
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Convolution: General Form

We convolve every channel of filter with corresponding channel of input, and
then sum them up

SufoIMSUM

multiply entry-wise
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Convolution: 3D Arrays

3D Convolution

Convolution of tensor X € RE*XN*M py filter/kernel W € RE*F*F with
stride S is denoted by

Z = Conv (X|W, 5)

The matrix Z is a matrix with |[(N — F')/S| + 1rows and |(M — F)/S| + 1
columns and its entry at row i and column j is computed as

Z[i,j] = sum (W O X, ;)
with X; ; being the corresponding C' x F' x I' sub-tensor of X, i.e.,

X;;=X[1:0,14(i-1)S:F+(i-1)S,1+(G—-1)S:F+(j—1)5]
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3D Convolution: Summary

As for 2D arrays, we can apply stride and by resampling; thus, we write
Z = Conv (X|W)

from now on and keep in mind that

e X js a tensor with C' channels

e W is a tensor-like kernel with C' channels: some people say with depth C'
e 7 is a matrix, i.e., it has a single channel

whenever needed we can
® apply a fractional stride by resampling

® upsampling before convolution
® downsampling after convolution

® qadjust the size of Z by zero-padding
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Components of CNNs Convolution

Convolution Layer: General Form

+ But, does it make sense to map a large tensor to a small feature map?
- This is a great point! This is why we compute multiple feature maps

A general convolutional layer has multiple kernels: each kernel computes a
separate feature map
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Components of CNNs Convolution

Convolution Layer: General Form

Multi-Channel Convolutional Layer

Convolutional layer with C'-channel input and K -channel output consists of K
filters W1, ..., W € REXF*F K biases by, . .., by and an activation
function f (-). It transforms the C'-channel input X to the activated K -channel
feature tensor Y as follows:

@ it finds the feature tensor Z
Z = [Conv (X|W1) + b1,...,Conv (X|Wgk) + bk]
@ it then activates Z

Y = f(Z) £ () applied entry-wise
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Components of CNNs Convolution

Multi-Channel Convolution Layer: Visualization
Z,
W,

ﬂ L — -
I b2 ~_

W Z Q)

There are few points that we should keep in mind

X

e Kernels have the same number of channels (also called depth) as input
e Number of kernels equals the number of channels in feature tensor

e |f X is output of a convolutional layer it may have lots of channels!
L, We should not think that “input has at most 3 channels”!
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Components of CNNs

How to Read Dimensions of Convolutional Layers

Many details are dropped as they are readily inferred from architecture

Il

4x3x5Hx5H

3 x 32 x32 4 x 28 x 28

In this diagram, we see that C' = 3 which is the same in kernels and input

® We have K = 4 kernels ~~ feature tensor has 4 channels
e Kernels have width ' = 5 v~ we seethat 32 — 5 + 1 = 28

L, strideisone,ie., S =1
L, no zero-padding is applied P = 0
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Idea of Pooling: Smoothing Filters

The output of convolution can be jittering which can come from spatial
correlation: Pooling acts as a filter by sliding over the extracted features and
pooling out a function of each subpart

® Pooling can reduce the jittering behavior
® |t can mix extracted features and potentially improve shift-invariance

Shift-Invariance

shift-invariance refers to robustness against simple geometric transform of input

+ How do we do the pooling?

- There are several pooling techniques but popular ones are max- and
mean-pooling
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Max-Pooling

For max-pooling, we use a filter of size L x L and slide over the feature map

Yy &712 O Yim
Y271 29 -} :YQ;A—,:[: -

—

TTE e maX{YLlYl’gYi,j}
YN71 YN72 e YN,M
In each window, we pool the maximum

Yin Yip

A

Y =

Attention

In max-pooling, we also track index of maximizer: we need it in backpropagation
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Components of CNNs Pooling

Max Pooling: Numerical Example
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Components of CNNs Pooling

Mean-Pooling

In mean-pooling, we again use an L x L filter and slide over the feature map

Yiq1 ?%1 i Yim
Yoi| Yoo .} Mrm=lo

)

S

Yni1 Yo YN M

)

In each window, we pool the average
. Y1,1 Y1,2
Y =

We can look at mean-pooling as a convolution with uniform kernel
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Components of CNNs Pooling

Mean-Pooling: Numerical Example
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Mean-Pooling: Numerical Example
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Advanced Pooling: Use a General Function

We could in general replace max or mean operator with a general function

Y1],Y YLZY YL]W
Y2 B b T R EEN Yy

RV S R

Yni Yo

We can even replace it with a small NN!
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Pooling with Stride

Similar to convolution, we can apply pooling with stride
e We usually do not use fractional stride with pooling

L, Upsampling the input, only adds zeros
L, Extra zeros usually do not make any gain: think of max-pooling for instance

¢ |nteger stride can be seen as downsampling

L, We apply pooling with unit stride
L, We down-sample output with sampling factor = stride

¢ |n practice, we often leave integer strides for pooling layer

L, We apply convolution with unit stride
L, If we need to down-sample, we do it later in the pooling layer
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Components of CNNs Pooling

Pooling: Few Remarks

+ Do we always pool after convolution?

- Not really! In many architectures pooling is applied every couple of
convolutional layers

It is worth noting that

¢ |n many architectures pooling is applied every couple of convolutional
layers

L, We apply multiple convolutional layers
L, We then apply a pooling layer with stride

® Most poolings have no learnable parameters; thus, they are cheap
L, Max and mean-pooling have no weights

® Filter size for pooling can be different from the convolutional layers
L, They are typically in the same range
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Output FNN: Flattening

Let’s recall our simple CNN

i p
8 5% 94
" y

Convolution Pooling Flattenina Fully-Connected

Once we are over with convolution and pooling we flatten final feature tensor

Flattening

In flattening, we sort all entries of the feature tensor into a vector
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Flattening

Last Convolution/Poolina

Say we have a feature tensor with K channels
L, each channel isan N x M map after last convolution or pooling

We then have an input to the FNN with N M K entries

After flattening everything goes as before through the fully-connected FNN
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