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Components of CNNs

Components of CNNs
CNNs consist of three major components

1 Convolutional layers
ë they are the key component
ë they extract features from input by sweeping filters over input

2 Pooling layers
ë they smooth the extracted features

3 Output FNN
ë they learn label from final extracted features

We now go through each of these components
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Components of CNNs Convolution

Convolution: 2D Arrays
We already know the definition of convolution for 2D arrays
2D Convolution
LetX P RNˆM be the input matrix: convolution ofX by filter/kernel
W P RFˆF with stride S is denoted by

Z “ Conv pX|W, Sq

The matrix Z has tpN ´ F q{Su ` 1 rows and tpM ´ F q{Su ` 1 columns and
its entry at row i and column j is computed as

Z ri, js “ sum pW d Xi,jq

withXi,j being the corresponding F ˆ F sub-matrix ofX, i.e.,

Xi,j “ X r1 ` pi ´ 1qS : F ` pi ´ 1qS, 1 ` pj ´ 1qS : F ` pj ´ 1qSs
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Components of CNNs Convolution

Convolution: 2D Arrays
Let’s see an example: assumeX P R4ˆ5 andW P R2ˆ2

X “

»

—

—

–

X1,1 X1,2 X1,3 X1,4 X1,5

X2,1 X2,2 X2,3 X2,4 X2,5

X3,1 X3,2 X3,3 X3,4 X3,5

X4,1 X4,2 X4,3 X4,4 X4,5

fi

ffi

ffi

fl

f W “

„

W1,1 W1,2

W2,1 W2,2

ȷ

X1,1 sumpX1,1 d Wq

X1,2 X1,3 X1,4

X2,1 X2,2 X2,3 X2,4

X3,1 X3,2 X3,3 X3,4

If we convolve with stride S “ 1

Z “

»

–

Z1,1 Z1,2 Z1,3 Z1,4

Z2,1 Z2,2 Z2,3 Z2,4

Z3,1 Z3,2 Z3,3 Z3,4

fi

fl

Let’s verify the dimensions of Z

# rows = tp4 ´ 2q{1u ` 1 “ 3 # columns = tp5 ´ 2q{1u ` 1 “ 4
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Components of CNNs Convolution

Convolution: Numerical Example

0.5 0.8 1 0.7 2.1

0.4 0.2 0.8 0.6 0.3

0.9 0.2 0 0.5 3

1 0.9 1.6 0.3 0.4

1 1

1 0

2.1 1.1 2.1 3.8

1.5 1.2 1.4 1.4

1.7 2 2.5 3.4
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Components of CNNs Convolution

Convolution: 2D Arrays
Let’s see an example: assumeX P R4ˆ5 andW P R2ˆ2

X “

»

—

—

–

X1,1 X1,2 X1,3 X1,4 X1,5

X2,1 X2,2 X2,3 X2,4 X2,5

X3,1 X3,2 X3,3 X3,4 X3,5

X4,1 X4,2 X4,3 X4,4 X4,5

fi

ffi

ffi

fl

f W “

„

W1,1 W1,2

W2,1 W2,2

ȷ

X1,1 sumpX1,1 d Wq

X1,2

X2,1 X2,2

Now, we convolve with stride S “ 2

Z “

„

Z1,1 Z1,2

Z2,1 Z2,2

ȷ

Let’s verify the dimensions of Z

# rows = tp4 ´ 2q{2u ` 1 “ 2 # columns = tp5 ´ 2q{2u ` 1 “ 2
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Components of CNNs Convolution

Convolution: Numerical Example

0.5 0.8 1 0.7 2.1

0.4 0.2 0.8 0.6 0.3

0.9 0.2 0 0.5 3

1 0.9 1.6 0.3 0.4

1 1

1 0

2.1 2.1

1.7 2.5
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Components of CNNs Convolution

Convolution: Downsampling
Let’s compare the result with strides 1 and 2

2.1 1.1 2.1 3.8

1.5 1.2 1.4 1.4

1.7 2 2.5 3.4

2.1 2.1

1.7 2.5

This is downsampling with factor 2!

Downsampling
Downsampling with factor f drops the last f ´ 1 of every f columns and rows

dSample pZ|fq
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Components of CNNs Convolution

Convolution: Downsampling

Downsampling with factor 2 dSample pZ|2q Downsampling with factor 3
dSample pZ|3q
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Components of CNNs Convolution

Convolution: Downsampling
Let’s compare the result with strides 1 and 2

2.1 1.1 2.1 3.8

1.5 1.2 1.4 1.4

1.7 2 2.5 3.4

2.1 2.1

1.7 2.5

Stride as Downsampling
We can look at stride S as downsampling with factor S, i.e.,

Conv pX|W, Sq “ dSample pConv pX|W, 1q |Sq
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Components of CNNs Convolution

Convolution: Downsampling
So, we can make an agreement: by default we consider unit stride, i.e., S “ 1,
i.e., we drop S in convolution from now on

Conv pX|Wq “ Conv pX|W, S “ 1q

Whenever we need to convolve with stride S ą 1

We add an downsampling next to the convolution

+ Why do we do this?
– We’ll see how easy things get when we want to backpropagate; however,it also helps to easily define having a stride smaller than one!
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Components of CNNs Convolution

Convolution: Upsampling
We can do the sampling in other way, i.e., add some zeros

f “ 2

Upsampling
Upsampling with factor f adds f ´ 1 rows and columns of zeros after every row
and column

uSample pZ|fq
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Components of CNNs Convolution

Convolution with Fractional Stride
+ Where do we use upsampling?
– If we want to increase the size of the feature map

To increase the size of the feature map, we can do following

X X̃

uSample pX|fq
Conv

´

X̃|W
¯

This is called fractionally-strided convolution: for S ă 1 with 1{S being integer

Conv pX|W, Sq “ Conv puSample pX|1{Sq |Wq
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Components of CNNs Convolution

Convolution: Resampling
We can extend stride to any fraction S “ S2{S1 with integer S1 and S2: we
first do upsampling with factor S1 and then downsampling with factor S2

Moral of Story
Convolution with stride is equivalent with

convolution with resampling

Note that the order of resampling differs
‚ Upsampling is done always before convolution
‚ Downsampling is done always after convolution

The above interpretation of stride helps a lot in backpropagation!
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Components of CNNs Convolution

Convolution: Padding
In our definition, feature map Z has smaller dimensions thanX even with
stride S “ 1. We can play with dimensions of Z via zero-padding
+ Why should we be interested in changing dimensions of Z?
– We’ll see multiple reasons: a simple one is that we may like to have a

same-size feature map to sketch it as an image and compare it to input

For instance in MNIST, we want to sketch the feature map as a 28 ˆ 28 image

f W
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Components of CNNs Convolution

Convolution: Zero-Padding
The trick to resize feature map is to pad zeros at boundaries
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Components of CNNs Convolution

Convolution: Zero-Padding
Typically we pad with widths smaller than filter dimension F
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Components of CNNs Convolution

Convolution: Zero-Padding
With zero-padding, the dimensions of feature map can be modified: say the
input hasN rows andM columns; then, at the feature map we have

‚ tpN ` Pt ` Pb ´ F q{Su ` 1 rows
‚ tpM ` Pl ` Pr ´ F q{Su ` 1 columns

In practice, we pad symmetrically, i.e., Pb “ Pt “ Pr “ Pl

As we see the dimensions of feature map is a function of
input dimensions, stride, padding length and filter size

It is thus typical that we get some of these items not specified, e.g., we might
get input and output dimensions, stride and filter size but not the padding length

we can find the padding length from other specifications
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Components of CNNs Convolution

Example: Stride = 2 and Padding

0.5 0.8 1 0.7 2.1 0

0.4 0.2 0.8 0.6 0.3 0

0.9 0.2 0 0.5 3 0

1 0.9 1.6 0.3 0.4 0

1 1

1 0

2.1 2.1 3.4

1.7 2.5 2.4
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Components of CNNs Convolution

Convolution: Activation
Convolution is a spatial linear transform on the input image

we should activate this linear transform if we go deep
A convolutional layer can hence be formally defined as below
Convolutional Layer
Convolutional layer with filterW P RFˆF , bias b and activation function f p¨q

transforms the input mapX to the activated feature mapY as follows:
1 it first applies linear convolution to find Z

Z “ Conv pX|Wq ` b + applied entry-wise

2 it then activates Z

Y “ f pZq f p¨q applied entry-wise
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Components of CNNs Convolution

Convolution: Activation

f W + b
f p¨q

+ We did not discuss bias before!
– It’s just a scalar added to all entries
+ What kinds of activation are used in CNNs?
– Similar to FNNs with ReLU being the popular one
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Components of CNNs Convolution

Convolution: Multi-Channel Input
What we discussed up to now holds for single-channel images: these are gray
images that can be represented by 2D pixel arrays, e.g., MNIST images

In practice, we have multi-channel inputs; for instance, RGB images have
three channels: anN ˆ M color image is stored in the form of threeN ˆ M
matrices, one storing red map, another green map, and the other blue map

red

green

blue

Applied Deep Learning Chapter 4: Convolutional NNs © A. Bereyhi 2024 – 2025 22 / 42



Components of CNNs Convolution

Recap: 3D Tensors
We can think of multi-channel input as a tensor of order 3, i.e., a 3D array

Reminder: Tensor of Order 3
TensorX P RCˆNˆM is a collection of C matrices each of sizeN ˆ M

For instance, anN ˆ M pixel RGB image is tensor in R3ˆNˆM

C

N

M
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Components of CNNs Convolution

Convolution: 3D Arrays
+ How can we extend convolution to these 3D tensors?
– We can look at 3D tensors as stack of 2D arrays

Let’s try a visual example: we want to convolve RGB image with filterW

convolve with

Filter should have the same number of channels, i.e.,W P R3ˆFˆF
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Components of CNNs Convolution

Convolution: General Form
We convolve every channel of filter with corresponding channel of input, and
then sum them up

m
u
lt
ip
ly

e
n
t
r
y-

w
is
e

W

sumsumsum
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Components of CNNs Convolution

Convolution: 3D Arrays

3D Convolution
Convolution of tensorX P RCˆNˆM by filter/kernelW P RCˆFˆF with
stride S is denoted by

Z “ Conv pX|W, Sq

The matrix Z is a matrix with tpN ´ F q{Su ` 1 rows and tpM ´ F q{Su ` 1
columns and its entry at row i and column j is computed as

Z ri, js “ sum pW d Xi,jq

withXi,j being the corresponding C ˆ F ˆ F sub-tensor ofX, i.e.,

Xi,j “ X r1 : C, 1 ` pi ´ 1qS : F ` pi ´ 1qS, 1 ` pj ´ 1qS : F ` pj ´ 1qSs
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Components of CNNs Convolution

3D Convolution: Summary
As for 2D arrays, we can apply stride and by resampling; thus, we write

Z “ Conv pX|Wq

from now on and keep in mind that
‚ X is a tensor with C channels
‚ W is a tensor-like kernel with C channels: some people say with depth C
‚ Z is a matrix, i.e., it has a single channel

whenever needed we can
‚ apply a fractional stride by resampling

‚ upsampling before convolution
‚ downsampling after convolution

‚ adjust the size of Z by zero-padding
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Components of CNNs Convolution

Convolution Layer: General Form
+ But, does it make sense to map a large tensor to a small feature map?
– This is a great point! This is why we compute multiple feature maps

A general convolutional layer has multiple kernels: each kernel computes a
separate feature map
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Components of CNNs Convolution

Convolution Layer: General Form
Multi-Channel Convolutional Layer
Convolutional layer with C-channel input andK-channel output consists ofK
filtersW1, . . . ,WK P RCˆFˆF ,K biases b1, . . . , bK and an activation
function f p¨q. It transforms the C-channel inputX to the activatedK-channel
feature tensorY as follows:

1 it finds the feature tensor Z

Z “ rConv pX|W1q ` b1, . . . ,Conv pX|WKq ` bKs

2 it then activates Z

Y “ f pZq f p¨q applied entry-wise
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Components of CNNs Convolution

Multi-Channel Convolution Layer: Visualization

X W2

W1

Z2

Z1

`b2

`b1
Z Y

f p¨q

There are few points that we should keep in mind
‚ Kernels have the same number of channels (also called depth) as input
‚ Number of kernels equals the number of channels in feature tensor
‚ IfX is output of a convolutional layer it may have lots of channels!

ë We should not think that “input has at most 3 channels”!
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Components of CNNs Convolution

How to Read Dimensions of Convolutional Layers
Many details are dropped as they are readily inferred from architecture

3 ˆ 32 ˆ 32

4 ˆ 3 ˆ 5 ˆ 5

4 ˆ 28 ˆ 28

In this diagram, we see that C “ 3 which is the same in kernels and input
‚ We haveK “ 4 kernels ù feature tensor has 4 channels
‚ Kernels have width F “ 5 ù we see that 32 ´ 5 ` 1 “ 28

ë stride is one, i.e., S “ 1
ë no zero-padding is applied P “ 0
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Components of CNNs Pooling

Idea of Pooling: Smoothing Filters
The output of convolution can be jittering which can come from spatial
correlation: Pooling acts as a filter by sliding over the extracted features and
pooling out a function of each subpart

‚ Pooling can reduce the jittering behavior
‚ It can mix extracted features and potentially improve shift-invariance

Shift-Invariance
shift-invariance refers to robustness against simple geometric transform of input

+ How do we do the pooling?
– There are several pooling techniques but popular ones are max- and

mean-pooling
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Components of CNNs Pooling

Max-Pooling
For max-pooling, we use a filter of size LˆL and slide over the feature map

Y “

»

—

—

—

–

Y1,1 Y1,2 . . . . . . Y1,M
Y2,1 Y2,2 . . . . . . Y2,M... ... ... ... ...
YN,1 YN,2 . . . . . . YN,M

fi

ffi

ffi

ffi

fl

max tY1,1Y1,2Yi,ju

Y1,1 Y1,2

In each window, we pool the maximum

Ŷ “

»

–

Ŷ1,1 Ŷ1,2 . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

fi

fl

Attention
In max-pooling, we also track index of maximizer: we need it in backpropagation
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Components of CNNs Pooling

Max Pooling: Numerical Example

1.5 2.3 1.5 0.7 2.1

2.3 0 3.8 0 4.3

1.9 3.2 2.1 1.5 0

0.4 2.3 0 1.3 0

3 4
1 2

in
d
e
x

in
d
e
x

3.2 3.2 2.1 1.5

3.2 3.8 3.8 4.3

2.3 3.8 3.8 4.3

4 3 3 3
2 4 3 4
1 2 1 2
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Components of CNNs Pooling

Mean-Pooling
In mean-pooling, we again use an LˆL filter and slide over the feature map

Y “

»

—

—

—

–

Y1,1 Y1,2 . . . . . . Y1,M
Y2,1 Y2,2 . . . . . . Y2,M... ... ... ... ...
YN,1 YN,2 . . . . . . YN,M

fi

ffi

ffi

ffi

fl

mean tY1,1Y1,2Yi,ju

Y1,1 Y1,2

In each window, we pool the average

Ŷ “

»

–

Ŷ1,1 Ŷ1,2 . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

fi

fl

We can look at mean-pooling as a convolution with uniform kernel
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Components of CNNs Pooling

Mean-Pooling: Numerical Example

1.5 2.3 1.5 0.7 2.1

2.3 0 3.8 0 4.3

1.9 3.2 2.1 1.5 0

0.4 2.3 0 1.3 0

2.05 1.9 1.225 0.7

1.85 2.275 1.85 1.45

1.525 1.9 1.5 1.775
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Components of CNNs Pooling

Mean-Pooling: Numerical Example

1.5 2.3 1.5 0.7 2.1

2.3 0 3.8 0 4.3

1.9 3.2 2.1 1.5 0

0.4 2.3 0 1.3 0

1
4

1
4

1
4

1
4

mean-pooling ” convolution with uniform kernel

2.05 1.9 1.225 0.7

1.85 2.275 1.85 1.45

1.525 1.9 1.5 1.775
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Components of CNNs Pooling

Advanced Pooling: Use a General Function
We could in general replace max or mean operator with a general function

Y “

»

—

—

—

–

Y1,1 Y1,2 . . . . . . Y1,M
Y2,1 Y2,2 . . . . . . Y2,M... ... ... ... ...
YN,1 YN,2 . . . . . . YN,M

fi

ffi

ffi

ffi

fl

Π p¨q : RLˆL ÞÑ R

Y1,1 Y1,2

Typical functions are norms, e.g., ℓ2-norm

Ŷ “

»

–

Ŷ1,1 Ŷ1,2 . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

fi

fl

We can even replace it with a small NN!
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Components of CNNs Pooling

Pooling with Stride
Similar to convolution, we can apply pooling with stride

‚ We usually do not use fractional stride with pooling
ë Upsampling the input, only adds zeros
ë Extra zeros usually do not make any gain: think of max-pooling for instance

‚ Integer stride can be seen as downsampling
ë We apply pooling with unit stride
ë We down-sample output with sampling factor = stride

‚ In practice, we often leave integer strides for pooling layer
ë We apply convolution with unit stride
ë If we need to down-sample, we do it later in the pooling layer
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Components of CNNs Pooling

Pooling: Few Remarks
+ Do we always pool after convolution?
– Not really! In many architectures pooling is applied every couple ofconvolutional layers

It is worth noting that
‚ In many architectures pooling is applied every couple of convolutional
layers

ë We apply multiple convolutional layers
ë We then apply a pooling layer with stride

‚ Most poolings have no learnable parameters; thus, they are cheap
ë Max and mean-pooling have no weights

‚ Filter size for pooling can be different from the convolutional layers
ë They are typically in the same range
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Components of CNNs Output FNN

Output FNN: Flattening
Let’s recall our simple CNN

Convolution Pooling Flattening Fully-Connected

Once we are over with convolution and pooling we flatten final feature tensor

Flattening
In flattening, we sort all entries of the feature tensor into a vector
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Components of CNNs Output FNN

Flattening

Last Convolution/Pooling

Say we have a feature tensor withK channels
ë each channel is anN ˆ M map after last convolution or pooling

We then have an input to the FNN withNMK entries

After flattening everything goes as before through the fully-connected FNN
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