
Applied Deep Learning
Chapter 3: Advancing Our Toolbox

Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 1 / 30

mailto:ali.bereyhi@utoronto.ca

What’s Next
Right now, we are familiar with FNN and how to train them

ë We potentially can also handle some other architectures
But, if we try to implement them from scratch, we could get into trouble

We still need to learn more tricks for having a working implementation

In this chapter, we advance our bag of tools in four respects
1 We learn more about optimizers

ë more advanced tricks to make gradient descent work
2 We learn about hyperparameter tuning
3 We learn about data preprocessing

ë how to handle data in practice
4 Tricks to make training faster and more robust

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 2 / 30

More on Optimizers

Back to Gradient Descent
Let’s take a look at training in abstract form once again

min
w

R̂ pwq (Training)
Recall thatw includes all weights and biases; for instance,

In FNN of Assignmet 2,w has 3,457 entries! In practice much higher!

Also recall the gradient descent
1: Initiate at somewp0q

P R
D and deviation∆ “ `82: Choose some small ϵ and η, and set t “ 13: while∆ ą ϵ do4: Update weights aswptq

Ð wpt´1q
´η∇R̂pwpt´1q

q5: Update the deviation∆ “ |R̂pwptq
q ´ R̂pwpt´1q

q|6: end while

Keep in mind: we almost always use (mini-batch) SGD ù let’s call it SGD

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 3 / 30

More on Optimizers Convergence of Optimizers

Convergence Rate of Optimizers
Recall: we can make gradient descent converging to local minimum if

we set the learning rate η small enough

So is it also with SGD. But, how fast does the algorithm converge?

Speed of an optimization algorithm is evaluated by convergence rate

We can understand its meaning from the eyes of optimality gap
Optimality Gap in Iteration t

Optimality gap is the gap betweenwptq and local minimizerw‹, i.e.,
optimality gap in iteration t “ |R̂pwptqq ´ R̂ pw‹q|

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 4 / 30

More on Optimizers Convergence of Optimizers

Convergence Rate of Optimizers

w

R̂ pwq

‹

‚wptq

w‹

g
a
p

An optimizer shrinks this gap gradually, i.e., we can approximately say1
|R̂pwpt`1qq ´ R̂ pw‹q| ď |R̂pwptqq ´ R̂ pw‹q| ď . . . ď |R̂pwp0qq ´ R̂ pw‹q|

In practice, this drop can occur with different speeds in terms of t

1It’s just approximately correct: gap may increase in one iteration only! That’s no problem
Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 5 / 30

More on Optimizers Convergence of Optimizers

Convergence Rate of Optimizers
An ideal scenario is that the gap drops by a constant factor each iteration

This intuitively means that for each iteration t, we see
|R̂pwptqq ´ R̂ pw‹q| ď α|R̂pwpt´1qq ´ R̂ pw‹q|

for some α ă 1: in this case, we can say

|R̂pwptqq ´ R̂ pw‹q| ď α|R̂pwpt´1qq ´ R̂ pw‹q|
ď αpα|R̂pwpt´2qq ´ R̂ pw‹q|q “ α2|R̂pwpt´2qq ´ R̂ pw‹q|
ď . . . ď αt|R̂pwp0qq ´ R̂ pw‹q|

Now say that |R̂pwp0qq ´ R̂ pw‹q| “ C .2 So, we can say
|R̂pwptqq ´ R̂ pw‹q| ď Cαt ù O

`

αt
˘

2We don’t really care how large C is. It’s going to shrink at the end
Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 6 / 30

More on Optimizers Convergence of Optimizers

Convergence Rate of Optimizers
An ideal scenario is that the gap drops by a constant factor each iteration

If we wish to end up somewhere in ϵ-neighborhood ofw‹; then, we need
Cαt ď ϵ

For this to happen, we need to have at least
t ě

log 1{ϵ ` logC

log 1{α
ù Oplog 1{ϵq

iterations: the closer we need to get, the more we should iterate

For this required time, we say that the optimizer converges linearly

It’s a fast rate, since number of iterations is proportional to logarithm of 1{ϵ

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 7 / 30

More on Optimizers Convergence of Optimizers

Convergence Rate of Optimizers
+ You said ideal! Isn’t gradient descent always converging at this rate?
– Well! Only when empirical risk is strongly convex and we do full-batch

training! You can guess it happens almost never for us!
+ But how it works with realistic NNs and SGD?

In general, it’s hard to characterize exact convergence; however, we knowthat when empirical risks are rather smooth functions3, we have
|R̂pwptqq ´ R̂ pw‹q| ď

L

tη

for some L that gets larger asw becomes larger. So, in practice, we have
|R̂pwptqq ´ R̂ pw‹q| “ Op1{tq

3To be rigorous: when it’s Lipschitz continuous, but we don’t really need details on that
Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 8 / 30

More on Optimizers Convergence of Optimizers

Convergence Rate of Optimizers
In practice, we have

|R̂pwptqq ´ R̂ pw‹q| “ Op1{tq

So, if we want to end up somewhere in ϵ-neighborhood ofw‹, we need

t “ Op1{ϵq

This can potentially take long! We say in this case that
the optimizer converges sub-linearly

+ How bad can it be?
– Just set ϵ “ 10´3: with linear convergence we need time in order of 3;

with sub-linear one, we need in order of 1000!

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 9 / 30

More on Optimizers Convergence of Optimizers

Alternative Optimizers
Moral of Story

Vanilla gradient descent is not what we can use in practice!

In practice, we employ improved versions of gradient descent: there is a
long list of them, but we check a few important ones that are typically used

‚ Gradient descent with learning rate scheduling
‚ Gradient descent with momentum
‚ Rprop: Resilient backpropagation
‚ RMSprop: Root mean square propagation
‚ Adam: Adaptive moment estimation

+ If gradient descent is not used in practice, why we did backpropagation?
– No worries! They all use gradient! This is why these algorithms arecommonly referred to as gradient-based training algorithms

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 10 / 30

More on Optimizers Learning Rate Scheduling

SGD with Learning Rate Scheduling
We had it in simple words in Chapter 1: we vary learning rate through time

wptq
Ð wpt´1q

´ηpt´1q∇R̂pwpt´1q
q

It’s called learning rate scheduling: start at large ηp0q “ η and reduce it with t

We may schedule learning rate with various approaches
‚ We could have linear decay

ηptq “
η

t ` 1

‚ We could have polynomial decay with power P
ηptq “

η

pt ` 1q
P

‚ We could have exponential decay with some exponent rate κ ą 0

ηptq “ η e´κt

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 11 / 30

More on Optimizers Learning Rate Scheduling

SGD with Learning Rate Scheduling
There is also a more practical trick for learning rate scheduling:

1 Use a fixed learning rate η until the test risk saturates
2 Reduce the learning rate as η Ð αη for α ă 1

3 Repeat the above steps until test risk arrives at a desired level

A good choice of α is around α “ 0.1

iteration

test
risk

‚

update η

‚

update η

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 12 / 30

More on Optimizers Learning Rate Scheduling

SGD with Learning Rate Scheduling
Learning rate scheduling can lead us to a better local minima; however,

it does not change the convergence rate

It is nevertheless a good approach for easy problems
We can access pre-implemented scheduling techniques in PyTorch
>> import torch>> torch . optim . l r _ s chedu l e r

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 13 / 30

More on Optimizers Learning Rate Scheduling

Momentum: Moving Average

Momentum is one of the key approaches to robust SGD

The idea is simple: we replace the gradient4 with its moving average
Say we are in iteration t and let the computed gradient to be gptq, i.e.,

gptq “ estimator
!

∇R̂pwptqq

)

e.g., we computed by SGD

With standard gradient descent we update as

wpt`1q Ð wptq´ηptqgptq

In momentum approach, we replace gptq with its moving average

4Which can largely variate, especially with small mini-batches
Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 14 / 30

More on Optimizers Learning Rate Scheduling

Momentum: Moving Average
Moving Average „ Momentum
Moving average with factor β in iteration t is

mptq “ βmpt´1q ` p1 ´ βqgptq

Moving average has less fluctuations; hence, it’s an estimator of true gradient
with less variance

SGD with momentum does the following update
Initiatemp0q

“ 0
for t “ 1, . . . do

¨ ¨ ¨

mptq
“ βmpt´1q

` p1 ´ βqgptq

wpt`1q
Ð wptq

´ ηptqmptq

¨ ¨ ¨

end for

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 15 / 30

More on Optimizers Learning Rate Scheduling

Nesterov Momentum: Accelerated Gradient Computation
Nesterov approach adds an intermediate step:when we compute gradient, we
use the already-calculated momentum to estimate future weights

Initiatemp0q

for t “ 1, . . . do
¨ ¨ ¨

ŵ “ wptq
´βmpt´1q # approximate next pointCompute gradient for weights ŵ: call it ĝptq

mptq
“ βmpt´1q

` p1 ´ βq ĝptq

wpt`1q
Ð wptq

´ ηptqmptq

¨ ¨ ¨

end for

You can combine these lines into a single line of update
that may looks a bit more complicated, but it’s the same thing!

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 16 / 30

More on Optimizers Learning Rate Scheduling

SGD with Momentum: Implementation
In PyTorch, SGD is already implemented with momentum
>> import torch>> torch . optim .SGD ()

When using this implementation, we can specify momentum factor, i.e., β,and choose whether Nesterov being applied or not
Typical choice of momentum factor is β “ 0.9, and remember

with β “ 0, we return to the standard SGD

This is the default value in PyTorch

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 17 / 30

More on Optimizers Rprop

Rprop: Resilient Backpropagation
Rprop was introduced by Riedmiller and Braun in 1992; check the paper here

Riedmiller and Braun noticed that gradient descent can be improved if we
could have individual learning rate in each dimension ofw: youmay recall
the first question in Assignment 1!

They hence came up with Rprop: let’s see first one-dimensional case
Rprop():

Initiate ηp0q and choose µ`
ą 1, µ´

ă 1, ηmax and ηmin

for t “ 1 : T do
¨ ¨ ¨Compute gradient at wptq and call it gptq

Update learning rate as ηptq
Ð Rprop_Schedulerpηpt´1q, gptq, gpt´1q

qUpdate weight wpt`1q
“ wptq

´ ηptqsignpgptq
q # only sign of gradient

¨ ¨ ¨

end for

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 18 / 30

https://ieeexplore.ieee.org/document/298623

More on Optimizers Rprop

Rprop: Learning Rate Scheduler
They key point of Rprop is its scheduler

Rprop_Scheduler():
Use µ`

ą 1 and ηmax as well as µ´
ă 1 and ηmin

if signpgptq
q “ signpgpt´1q

q then
Update learning rate ηptq

“ min
!

µ`ηpt´1q, ηmax

)

go faster
elseUpdate learning rate ηptq

“ max
!

µ´ηpt´1q, ηmin

)

slow down
end if

It follows an intuitive strategy
ë Keep going faster as the sign of gradient is not changing
ë Slow down only when the sign changes: you have passed the minimum!

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 19 / 30

More on Optimizers Rprop

Rprop: Resilient Backpropagation
Let’s look at it geometrically

w

R̂ pwq

‹

‚‚

‚‚

‚‚ ‚‚

In simple words, with Rprop
we keep on increasing until we pass the minimum

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 20 / 30

More on Optimizers Rprop

Rprop: Resilient Backpropagation
+ How does it extend to multi-dimensional case that we have in training?
– We apply this idea on every entry individually

Initiate η and choose µ`, µ´, ηmax and ηmin

for t “ 1 : T do
¨ ¨ ¨Compute gradient gptq

for every entry i of gptq doUse the sign of entry and update ηptq

i via Rprop_Scheduler()Apply one-dimensional Rprop() to update entry i ofwptq

end for
¨ ¨ ¨

end for

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 21 / 30

More on Optimizers Rprop

Rprop: Resilient Backpropagation
Typical choices of parameters for this algorithm are

‚ initial learning rate η “ 0.01

‚ factors µ` “ 1.2 and µ´ “ 0.5

‚ ηmax and ηmin are less important: they get automatically regulated
It’s better to avoid choices that 1{µ` “ µ´, because if we pass the mini-
mum, we don’t like to move exactly the previous point

We can again access Rprop through module optim in PyTorch
>> import torch>> torch . optim . Rprop ()

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 22 / 30

More on Optimizers RMSprop

RMSprop: Root Mean Square Propagation
It turns out the Rprop only works fine with full-batch training

ë it’s because, it ignores the magnitude of gradient
To understand why this happens, consider the following dummy example

Consider a one-dimensional case, i.e.,w “ w: we break the full batch into
4 mini-batches and come up with the following derivatives calculated in
each step of mini-batch SGD

(1) ú 0.1 (2) ú 0.1 (3) ú 0.1 (4) ú ´0.5

We may approximately say that the derivative of full-batch risk, at the
very first choice of w, was close to zero or negative; however, Rprop

1 takes first three steps with larger and larger learning rates
2 only comes back with smaller step at last iteration

It could be hence already lost at the last iteration!

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 23 / 30

More on Optimizers RMSprop

RMSprop: Root Mean Square Propagation
Geoffrey Hinton in his lecture notes5 came up with a solution: we can use the
idea of moving average to further normalize the learning rate according to
average gradient magnitude

this way we do not completely ignore the magnitude of gradient

Hinton looks differently at update rule of Rprop: recall the update rule

wpt`1q
“ wptq

´ ηptq
d signpgptq

q

We can write alternatively as

wpt`1q
“ wptq

´ ηptq
d

gptq

|gptq|

where |¨| operates entry-wise

learning rates are updated entry-wise

5Click to check out the lecture notes!
Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 24 / 30

https://arxiv.org/abs/1308.0850v5

More on Optimizers RMSprop

RMSprop: Root Mean Square Propagation
Hinton suggests that we replace the denominator with

moving average of root mean square of the gradients

This mean: starting with some vp0q “ 0 we determine in iteration t

vptq “ βvpt´1q ` p1 ´ βq |gptq|2

for some β ă 1 and normalize gptq with
?
vptq

Initiate vp0q
“ 0

for t “ 1 : T do
¨ ¨ ¨

vptq
“ βvpt´1q

` p1 ´ βq |gptq|2 # compute moving average

wpt`1q
“ wptq

´ η
gptq

?
vptq

normalize by RMS
¨ ¨ ¨

end for

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 25 / 30

More on Optimizers RMSprop

RMSprop: Root Mean Square Propagation

We may note that RMSprop can be observed as
SGD with Rprop-inspired learning rate scheduling

Note that the exact form of RMSprop has more details!

In typical implementations of RMSprop, we set
‚ learning rate to a some constant: typical choice η “ 0.01

‚ β to be close to 1: typical choice β ą 0.9

The complete form of RMSprop is also available in module optim of PyTorch
>> import torch>> torch . optim . RMSprop ()

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 26 / 30

More on Optimizers Adam

Adaptive Momentum Estimation
Most recent implementations use the optimizer

Adaptive Momentum Estimation: Adam

that was proposed by Kingma and Ba in 20156
The idea of Adam is straightforward: it combines RMSprop with momentum

it combines the strength of both approaches

In simple words: Adam suggests that we use
‚ momentum for updating the weights
‚ Rprop-inspired approach for normalization ” scheduling

6Click to check out the original paper!
Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 27 / 30

https://arxiv.org/pdf/1412.6980v9.pdf

More on Optimizers Adam

Adaptive Momentum Estimation
We can think of Adam as below

Initiatemp0q and vp0q

for t “ 1 : T do
¨ ¨ ¨

mptq
“ β1m

pt´1q
` p1 ´ β1qgptq # compute momentum

vptq
“ β2v

pt´1q
` p1 ´ β2q |gptq|2 # compute RMS

wpt`1q
“ wptq

´ η
mptq

?
vptq

move with normalized momentum
¨ ¨ ¨

end for

Attention
Pseudo codes in this lecture give the main ideas: there are further details and
numerical tricks to make these algorithms robust and stable in practice

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 28 / 30

More on Optimizers Adam

Adaptive Momentum Estimation
In typical implementations of Adam, we set

‚ learning rate to a some constant: typical choice 0.001 ă η ă 0.01

‚ β1 to be close to 1: typical choice β1 “ 0.9

‚ β2 to be closer to 1: typical choice β2 “ 0.99

Just check out the PyTorch implementation in the module optim
>> import torch>> torch . optim .Adam ()

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 29 / 30

More on Optimizers Other Optimizers

Other Optimizers: First Order vs Second Order
There is a long list of modified gradient descents

Press Tab after typing torch.optim. to see how long it is!

In some particular applications, we may need to learn a new one: it is hence
good to know these two terms

‚ First-order optimizers that use only gradient, i.e., first-order derivatives
ë What we had in this section were all first-order

‚ Second-order optimizers also use Hessian, i.e., second-order derivatives
ë These approaches are inspired by Newton’s method that shows

convergence of gradient descent is boosted if we multiply gradient with
inverse of Hessian

ë They have typically better convergence behavior
ë Finding Hessian is a huge computation: practical algorithms usually

approximate Hessian; but, they still need high computation

Applied Deep Learning Chapter 3: Advancement I © A. Bereyhi 2024 - 2025 30 / 30

	More on Optimizers
	Convergence of Optimizers
	Learning Rate Scheduling
	Rprop
	RMSprop
	Adam
	Other Optimizers

