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Binary Classification via FNN

Let's now design a deep FNN for binary classification

We have a set of images of hand-written numbers, something like this®
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We intend to train a fully-connected FNN that given a new hand-written
image, it finds out whether it is “2” or not

9source: Wikipedia

This is a binary classification!
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Binary Classification via FNN: Data

Let's get clear about the data: our dataset looks like
D= {(ch,vb) for b = 1,...,B}

where in this set each component is defined as follows:
¢ B is the number of images we have
L, we also call the set of images: a batch of images
e 2, € RV is the pixel vector of image b
L, N is the number of pixels in the image
* v, € {0, 1} is a binary label indicating whether it is “2” or not

L, if the image is a hand-written “2” we set v, = 1
L, if the image is not a hand-written “2” we set v, = 0
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Binary Classification via FNN: Model

Let's now set the model: we use a fully-connected FNN

What are the hyperparameters?
e We want it to be deep; so, we consider 2 hidden layers
L, the depth is hence 3
* We specify the width of each hidden layer

L, first hidden layer has width K
L, second hidden layer has width .J

e All hidden neurons use RelLU activation
L f1(-) = fa () = ReLU (-): let's show ReLU by r, i.e.,

r (z) = ReLU ()

e Qutput layer has a single perceptron

We can now write down the model!

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025

4/48



Binary Classification via FNN: Model

Y3

layer 3

layer | layer 2.
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Binary Classification via FNN: Model

Let's now set the model: we use a fully-connected FNN

What are the learnable parameters?
* Layer 1 has (N + 1)K links
L, NK of them are weights
L, K of them are biases = weights of dummy node zo = 1
* Layer 2 has (K + 1)J links
L, K J of them are weights
L, J of them are biases = weights of dummy node y; [0] = 1
e Qutput layer has J + 1 links

L. J of them are weights
L. one is bias = weight of dummy node y, [0] = 1
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Our First Deep NN

Binary Classification via FNN: Model

layer 3
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Binary Classification via FNN: Loss

How to calculate the loss? Let’s do what we did before

We use the error indicator as the loss function

1y # vy

L (yp,vp) = L{yy # vp} = {
0 =1

+ Wait a moment! Didn’t you say that this was a bad choice?

- Yeah! So said | also for the perceptron’s activation! Let’s try it out to find
out really why they are bad! We should be able to understand it now
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Binary Classification via FNN: Training

Let’s look at the computation graph: for a given data-point (z;,, vy ), we have

SRR = S T
@%%@%%@%g

Here, we have 3 linear operations
* First operation is z; = Wx;, with W € RE*(V+1)
L, first column of W is bias and the remaining columns are weights
e Second operation is zy = Way; with Wy € R/*(K+1)
L, first column of W, is bias and the remaining columns are weights
e Last operation is z3 = w1 x with wy € R/*!
L. first entry of ws is bias and the remaining entries are weights
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Binary Classification via FNN: Training

Let’s look at the computation graph: for a given data-point (z;,, vy ), we have

SRR = S T
@%%@%%@%5

We have 3 functional operations
® The firsttwo are y; = r(z1) and yo = 7 (z2)
* The last one is y3 = s (z3), and recall that s (-) is the step function

(2) 1 23>0
vs 3 0 23<0
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Binary Classification via FNN: Training

Let's write gradient descent for training of our model

GradientDescent () :

1: Initiate with some initial values {Wf”, W;O) , wéo)} and set a learning rate n
2: while weights not converged do

3: forb=1,...,Bdo

4: NN.values < ForwardProp (xy, {WY), W;t), wét)})
5: {G1.,Gap, @36} < BackProp (s, vy, (W, Wgt),wét)}, NN.values)
6:  end for
7: Update
Wl(t+1) <« Wl(t) — 1) mean (Gl,l, ey GI,B)
WQ(t+1) <« Wg(t) — 7] mean (Gz}l, ey G2,B)
W3(t+1) <« W3(t) — 7] mean (g371, ey gg’B)
8: end while

Let’s look at forward and backward propagation!
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Binary Classification via FNN: Forward Pass

Forward pass is very straightforward: say we are at iteration ¢

@ For each pixel vector x;, we determine z; as
1 ¢
X «— [ o 7] = Wg )x
Tp

The output of first layer is then given by y; = r(z1): r (+) is ReLU, so

‘ we keep positive entries of z1 and replace negative ones with zero

® We add 1 at index 0 of y; and determine z- as
1 (t)
<« > 79 = W
Y1 [yl] 2 2°Y1
The output of second layer is given by yo = r(z3)
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Our First Deep NN Training

Binary Classification via FNN: Forward Pass

® We add 1 at index 0 of y5 and determine z3 as
y2 < [ ! } > 23 = W(t)TY2
y2 3

The network output is given by y3 = s(z3): s (+) is step function, so

‘ it’s O if z3 is negative, and 1 if it is not negative ‘

At this point, we have all that we need, i.e.,

X, Z1, Y1, Z2, Y2, 23 and y3
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Binary Classification via FNN: Training

How does the graph look like on the backward pass?

R data-point (zj,vp) F-----------~=

é—’@c@c@c@:’/@c ‘

Let’s move backward!
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Our First Deep NN Training

Binary Classification via FNN: Backward Pass

We know all the derivatives, i.e.,

£y, v) = d%n{y Lo} B =ws(e) () = ()

For backward pass we start at node y/3:
@ We find derivative w.r.t. output 53 = E(yg, vp) and set

P P

zZ3 = 935(z3)

® We compute 372 = w3 2 5 and drop its first entry; then, compute

Vo [;22[[;9}]] w7y = 1(22) O ¥y
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Binary Classification via FNN: Backward Pass

® We compute ;1 = W;?Z and drop its first entry; then, compute

Ve [;ﬁfﬂ[@}

Vi :]] oy,

At this point, we can calculate all gradients

N S &
Gy =Vw, Ry = z1y) = 21X

Gap = Vw, Ry = z2y]
g3y = ngf%b = Z3yg
All done! We repeat it for every image in the batch and then average gradients.

Finally, we move one step in gradient descent and find the weights of the next
iteration
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Binary Classification via FNN: Differentiability Issue

+ Where is then the issue with perceptron and indicator error?

- L (y,vp) and § (2) are not well-defined!
L, Recall that they are discontinuous

In fact, the empirical risk is not a smooth function of the weights and biases;
therefore, using gradient descent we do not end up with a well-trained network

+ How can we get over it?

- Well! There is a very well-established trick!
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Binary Classification via FNN: Differentiability Issue

We first replace the perceptron with a neuron whose activation is a good
approximation of step function and differentiable®

o (z)

We already have seen the sigmoid function
o (z)

which looks pretty close to step function

B 1
Cl4e

s (z)

x xz

Using sigmoid instead of step function resolves the differentiability issue

1Or at least, we can easily calculate a sub-gradient for it
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Binary Classification via FNN: Differentiability Issue

But, replacing perceptron by sigmoid-activated neuron makes a new problem

‘ The output of the network is now not binary! ‘

How can we address this problem?

We now interpret the output as probability, i.e.,

ys3 is the probability of the label being 1

+ OK! But how can we define the loss now?
- Well! We could look at the true label from the same point of view

Sayv € {0, 1}is true label: if v = 1 then the true label is 1 with probability
1; if v = 0O then the true label is 1 with probability 0. So, we could say

the true label is 1 with probability v
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Binary Classification via FNN: Differentiability Issue

true label is 1 with probability v «~~> 13 is probability of the label being 1
Apparently, v and y3 are of the same nature: we can still define a loss that
evaluates the difference between 13 and v

+ What should be the loss then?

- Definitely not the indicator error!

Indicator error is not suitable because
@ we already now that it is not differentiable
@® more importantly, with sigmoid activation becomes useless

1{o(z3) # 1} = 1{o(z3) # 0} = 1
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Binary Classification via FNN: MSE

One may suggest that we use the squared error, i.e.,

L (y3,v) = (y3 — v)?
in this case the empirical risk is called

Mean Squared Error (MSE)

This loss is differentiable

L(y3,v) =2(ys —v)
and proportional to the distance between y3 and v

It's a good choice but not best
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Binary Classification via FNN: Cross-Entropy

A better choice is to determine the cross-entropy loss

L (y3,v) = CE (y3,v) = —vlogys — (1 —v)log (1 —y3)

_ 1ogyi3 v=1
logl_Ly3 v=20

This loss function is sometimes wrongly called KL-divergence: it is propor-
tional to the Kullback-Leibler divergence but it’s different

This loss is again differentiable

,C (y;;,’U) = CE (yg,v) = +
Note: The logarithm is usually in natural base, i.e., log x = Inx

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 22/48



Binary Classification via FNN: Cross-Entropy

+ But why cross-entropy is a better loss?
- It pushes y3 more towards the edges of interval [0, 1]

<
I
o

v=1,

1
1
{
'
i

Y3 Y3

Cross entropy returns much higher loss when 3 is different from v
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Binary Classification via FNN: Training with Cross-Entropy

+ What changes in the training loop in this case?
- Pretty much nothing! Just replace
* L (y3,v) with CE (y3,v)
L (y3,v) with CE (y3,v)
s (z3) with o (23)

rommm e {datapoint (e )} oo s CI0)
@—*@\—;@c@\—;@c@c .
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Binary Classification via FNN: Training with Cross-Entropy

+ How do we use the output of network then, when we give a new image to
it for classification? It’s not binary!

- Just follow the interpretation

y3 gives the probability of the image being hand-written “2”; therefore,
(1 — y3) gives the probability of image being any other hand-written num-
ber. So, we select the outcome with higher chance, i.e.,

e if y3 = 0.5, we label the new image as a hand-written “2”
® ify3 < 0.5, we label the new image as not being a hand-written “2”

+ Can'’t we classify more classes? Like hand-written “0”, “1”, .. ., “9”?

- Now that we have this nice interpretation: Yes! We can!
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Multiclass Classification
We initially saw that any multiclass classification can be seen as a sequence

of binary classifications; however, for that, we need multiple NNs!

+ Why not follow the same idea and determine the probability of input
belonging to each class?

- Yes! That’s actually the effective way!

Let's get back to our image recognition, but now with multiple classes!

We have images of hand-written numbers from “0” to “9” and want to
train a NN that recognizes any hand-written number

We first draw our earlier FNN
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Our First Deep NN Multiclass Classification

Multiclass Classification via FNN

’

’

layer 3

N =/
layer O
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yer | layer 2-

In this FNN, ys3 is interpreted as a probability of label being 1
probability of label being 0 is hence 1 — 3

This was done by a standard single-output neuron, since we had only 2 classes
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Our First Deep NN Multiclass Classification

Multiclass Classification via FNN

y3 [1]

layer 3

: y3 [C]

“avert e
With C classes, we need a module that computes probabilities of all C' classes

this module can be seen as a neuron with vector output
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Multiclass Classification: Vector-Activated Neuron

Vector-Activated Neuron

A vector-activated neuron is an artificial neuron with multivariate activation
function: let € RY be the input to this neuron and C' be its output dimension;
then, the output vector y € RC is given by

y=F (W:I) + b)
for weight matrix W € RE*Y, bias b € R® and activation F (-) : R® — RY

First thing first: let’s get rid of the bias before we go on
111
y = F([b W] [x]) — F (Wx)
So, we keep on with our dummy 1 input here as well
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Our First Deep NN Multiclass Classification

Multiclass Classification: Vector-Activated Neuron

=N

1 1
10}

Next, let’s see how its computation graph looks

()

—0—O

This looks exactly like a standard layer with a minor difference

F (-) does not necessarily perform entry-wise
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Our First Deep NN Multiclass Classification

Multiclass Classification: Softmax

A very well-known example of vector activation is softmax

=N

1 1
10}

Softmax Function
For z € R€, softmax function returns Soft, . (z)=y€ R€ whose entry c is

oAl

3 eslil

Jj=1
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Our First Deep NN Multiclass Classification

Multiclass Classification: Softmax

Softmax always returns a probability distribution on the set of classes

C
C €Z[C] ;16 []
Zy[c] = Z c =7 =1
=1 S A S el
j=1 j=1

We can hence use it to extend our FNN to a multiclass classifier

We replace layer 3 with a softmax-activated multivariate neuron and treat
its outcome as the chance of input belonging to each class; then, we select
the class with highest chance
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Our First Deep NN Multiclass Classification

Multiclass Classification via FNN: Softmax Activation

1 1 I
|
1 1
1 1

Softmax ()

layer 3

N N — -

layer | layer 2.

Let’s try again the forward pass
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Multiclass Classification via FNN: Softmax Activation

Let’s look at the computation graph: for a given data-point (z;,, vy ), we have

mmmmmmmmmmm oo data-point (zy,vp) f == == -----------= > Ry
: : : C C S0ftmax (- @g

Note that the output layer has been changed
* We now have a vector zs € R®
L, So we have a matrix of weights W5 € RE>(/+1)
e We now have a vector y5 € R¢
* We get from zs to y3 via softmax
L, This is not an entry-wise activation anymore!
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Our First Deep NN Multiclass Classification

Multiclass Classification via FNN: Softmax Activation

@ For each pixel vector x;, we determine z; as

x*[l]wzlzwgt)x
Ty

The output of first layer is then given by y| = r(z1)
@® We add 1 at index 0 of y; and determine z- as

1 t
Y1« Lﬁ] o Zg = Wé)yl

The output of second layer is given by yo = 1(z2)
® We add 1 at index 0 of y, and determine z3 as

1 T
y2 < L’z] VW>Z3=W;(),) y2

The network output is given by y3 = Softyax (23)
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Multiclass Classification: Loss

+ How can we define the loss now? On one side we have a vector of
probabilities; one the other side an integer label!
- Again we need to convert true labels to probabilities
Let's say we have C' classes: the vector of probabilities contains C entries

1 Pr {image belongs to class 1}
p=1:|= :
PC Pr {image belongs to class C'}
If we know that the image b belongs to class v, we could say that
[ p1 ] [ Pr {image b belongs to class 1} =0 | [0 ]
pofimageb = | py, | = | Pr{image b belongstoclassv,} =1| = |1
| pc | | Pr {image b belongs to class C'} =0 | [ 0
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Multiclass Classification: Loss

So, we could say that label v is corresponding to a vector of size C whose entry
v is 1 and the remaining entries are all O: this vector is called a one-hot vector

One-hot Vector

The one-hot vector 1,, € {0, 1}C is a C-dimensional vector whose entry v is 1
and all remaining entries are 0

For instance: say C' = 3; then, we have

1 0
1, =10 1= |1 13
0

Il
= O O

Moral of Story

We can interpret true label v as a probability vector 1,
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Our First Deep NN Multiclass Classification

Multiclass Classification: Loss

We can interpret true label v as a probability vector 1,,
Now for image b with label v, we compare network’s output y3 to 1,,
Rb =L (Y3’ ]-’L)b)

for loss L (-) that determines distance between two probability vectors
+ What kind of loss functions do we use usually?
- Like binary case: squared error is good, cross-entropy is the best
+ How do we define them in this case?
- Just extend them to multi-dimensional vectors
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Our First Deep NN Multiclass Classification

Multiclass Classification: Loss

We can extend squared error to vector form as

L(y.1 )—Hy—lvll2=2 ¢l = 1{c=v})*

This gradient of this loss is

VL(y,1,) =2 y[vj—l =2(y—1,)
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Our First Deep NN Multiclass Classification

Multiclass Classification: Loss

Cross entropy can also be extended as follows

C
L(y,1,) =CE(y,1,) == ) 1{c=wv}logy ()

= —logy [v]
The gradient of this loss is
C o
VL (y,1,) = VCE(y,1,) = —1/y[v] _ ! 1,
: y [v]
| o
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Backpropagation Through Vector Activation

How can we backpropagate through this neural network?

%%@c@c@c@i' L

@ Compute V., Ry = Vy, L (y3, 1u,)

@ Compute V,, Ry, from Vy, Ry, by its backward link that | we don’t know yet

© Compute Vy, Ry = WiV, R,
@ Remove entry at index 0 of Vy, Ry, and compute Vs, Ry =7 (z2) ® Vy, Ry
© Compute Vy, R, = W1V, Ry
® Remove entry at index 0 of V, R;, and compute V,, R, = 7 (21) ® Vy, Ry
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Our First Deep NN Multiclass Classification

Backpropagation Through Vector Activation
How is V,, Ry, related to Vy, Ry? Let's do what we did before

In this graph, F () is a vector activation. We know V, R

VyR

We want to find VZR

As mentioned before: we can always extend things entry-wise

With vector activation, we need to use the notion of Jacobian
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Recap: Jacobian Matrix

Consider vector activation F' (-) that maps C'-dimensional — C'-dimensional

Y1 21
=I( )
Yyc zC

When we use this function, we can say

Any entry y; is function of all z1, . . ., zc, so we have
ayj/az]
vz Yy; =
52,’.7’/62@
It is not any more an entry-wise functional operation
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Recap: Jacobian Matrix
Consider vector activation F' (-) that maps C'-dimensional — C'-dimensional
Y1 21
=0
Yo ZC

When we use this function, we can say

We can collect all these gradients into a matrix

Vaoyr W oz ... oz
Juy = J.F = : = : :
Vayo ! Wefozy ... Oucfoze

and we call it the Jacobian matrix
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Nl AL M icoss Classficaton
Backpropagation Through Vector Activation

Now, let’s get back to our problem

In this graph, F (-) is a vector activation. We know VR

VyR

y

We want to find VZR: let's write down a partial derivative Rw.rt. Ze

ok & OR oy, - S .
DY e 1

transpose Of column ¢ of J,y =row c of J]y
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Backpropagation Through Vector Activation
So, the gradient of Rwurt. zis given by

6R/621 row 1 of levyR
VLRI | = : — (9Iy) vkt
5R/6Zc row C of JZyVyR

So, we can complete the computation graph as follows

I3y s

Backward Pass of Vector Activation

To pass backward on a vector activation, we use the transpose of its Jacobian
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Backpropagation Through Vector Activation

How can we backpropagate through this neural network? Let’s complete

%@c@c@c@c@f—/' L

3 JSoft ax
@ Compute Vy3Rb = Vy, L (Y37 1) fone

g ‘ COmpUte vz3 Rb = (Jsoftmax)T VYBRb ‘

© Compute Vy, Ry, = WiV, R,
@ Remove entry at index 0 of Vy, Ry, and compute Vs, Ry =17 (z2) ® Vy, Ry
© Compute Vy, Ry, = WiV, R,
@ Remove entry at index 0 of V, R;, and compute V,, R, = 7 (21) ® Vy, Ry
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Multiclass Classification via FNN: Training

Let's now recall gradient descent for training of multiclass classifier

GradientDescent () :

1: Initiate with some initial values {W§°>, Wéo) , W§°>} and set a learning rate n
2: while weights not converged do

3: forb=1,...,Bdo

4: NN.values < ForwardProp (x, {W§t>7 Wét)a W:(*»t) })
5. {G1., G2, G} < BackProp (x5, vy, {W'? W, W;(),t)}> NN.values)
6:  end for
7. Update
W, D« W, — ) mean (Gi1,...,G1.5)
WL« W — ) mean (Gai,..., Ga,B)
W3 « W3 — ) mean (Gsy,...,Gs.5)
8: end while

We call this form of gradient descent full-batch
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