
ECE 1508: Applied Deep Learning
Chapter 2: Feedforward Neural Networks

Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 1 / 48

mailto:ali.bereyhi@utoronto.ca

Our First Deep NN

Binary Classification via FNN
Let’s now design a deep FNN for binary classification

We have a set of images of hand-written numbers, something like thisa

We intend to train a fully-connected FNN that given a new hand-written
image, it finds out whether it is “2” or not

aSource: Wikipedia

This is a binary classification!

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 2 / 48

Our First Deep NN

Binary Classification via FNN: Data
Let’s get clear about the data: our dataset looks like

D “ tpxb, vbq for b “ 1, . . . , Bu

where in this set each component is defined as follows:
‚ B is the number of images we have

ë we also call the set of images: a batch of images
‚ xb P RN is the pixel vector of image b

ë N is the number of pixels in the image
‚ vb P t0, 1u is a binary label indicating whether it is “2” or not

ë if the image is a hand-written “2” we set vb “ 1
ë if the image is not a hand-written “2” we set vb “ 0

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 3 / 48

Our First Deep NN

Binary Classification via FNN:Model
Let’s now set the model: we use a fully-connected FNN

What are the hyperparameters?
‚ We want it to be deep; so, we consider 2 hidden layers

ë the depth is hence 3
‚ We specify the width of each hidden layer

ë first hidden layer has widthK
ë second hidden layer has width J

‚ All hidden neurons use ReLU activation
ë f1 p¨q “ f2 p¨q “ ReLU p¨q: let’s show ReLU by r, i.e.,

r pxq “ ReLU pxq

‚ Output layer has a single perceptron
We can now write down the model!

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 4 / 48

Our First Deep NN

Binary Classification via FNN:Model

x1

...
xN

layer 0

r

...

r

layer 1

r

...

r

layer 2

___|
´́

layer 3

y3

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 5 / 48

Our First Deep NN

Binary Classification via FNN:Model
Let’s now set the model: we use a fully-connected FNN

What are the learnable parameters?
‚ Layer 1 has pN ` 1qK links

ë NK of them are weights
ë K of them are biases ” weights of dummy node x0 “ 1

‚ Layer 2 has pK ` 1qJ links
ë KJ of them are weights
ë J of them are biases ” weights of dummy node y1 r0s “ 1

‚ Output layer has J ` 1 links
ë J of them are weights
ë one is bias ” weight of dummy node y2 r0s “ 1

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 6 / 48

Our First Deep NN

Binary Classification via FNN:Model

x1

1

...
xN

layer 0

r

1

...

r

layer 1

r

1

...

r

layer 2

___|
´́

layer 3

y3

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 7 / 48

Our First Deep NN

Binary Classification via FNN: Loss
How to calculate the loss? Let’s do what we did before

We use the error indicator as the loss function

L pyb, vbq “ 1 tyb ‰ vbu “

#

1 yb ‰ vb

0 yb “ vb

+ Wait a moment! Didn’t you say that this was a bad choice?
– Yeah! So said I also for the perceptron’s activation! Let’s try it out to findout really why they are bad! We should be able to understand it now

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 8 / 48

Our First Deep NN Training

Binary Classification via FNN: Training
Let’s look at the computation graph: for a given data-point pxb, vbq, we have

xb z1 y1 z2 y2 z3 y3

data-point pxb, vbq L p¨, vbq R̂b

W1 r p¨q W2 r p¨q wT
3 s p¨q

Here, we have 3 linear operations
‚ First operation is z1 “ W1xb withW1 P RKˆpN`1q

ë first column ofW1 is bias and the remaining columns are weights
‚ Second operation is z2 “ W2y1 withW2 P RJˆpK`1q

ë first column ofW2 is bias and the remaining columns are weights
‚ Last operation is z3 “ wT

3 x withw3 P RJ`1

ë first entry ofw3 is bias and the remaining entries are weights

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 9 / 48

Our First Deep NN Training

Binary Classification via FNN: Training
Let’s look at the computation graph: for a given data-point pxb, vbq, we have

xb z1 y1 z2 y2 z3 y3

data-point pxb, vbq L p¨, vbq R̂b

W1 r p¨q W2 r p¨q wT
3 s p¨q

We have 3 functional operations
‚ The first two are y1 “ r pz1q and y2 “ r pz2q

‚ The last one is y3 “ s pz3q, and recall that s p¨q is the step function
y3 “ s pz3q “

#

1 z3 ě 0

0 z3 ă 0

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 10 / 48

Our First Deep NN Training

Binary Classification via FNN: Training
Let’s write gradient descent for training of our model

GradientDescent():
1: Initiate with some initial values tW

p0q

1 ,W
p0q

2 ,w
p0q

3 u and set a learning rate η2: while weights not converged do3: for b “ 1, . . . , B do4: NN.values Ð ForwardProp pxb, tW
ptq

1 ,W
ptq

2 ,w
ptq

3 uq

5: tG1,b,G2,b,g3,bu Ð BackProp pxb, vb, tW
ptq

1 ,W
ptq

2 ,w
ptq

3 u, NN.valuesq6: end for7: Update
W1

pt`1q
Ð W1

ptq
´ η mean pG1,1, . . . ,G1,Bq

W2
pt`1q

Ð W2
ptq

´ η mean pG2,1, . . . ,G2,Bq

w3
pt`1q

Ð w3
ptq

´ η mean pg3,1, . . . ,g3,Bq

8: end while

Let’s look at forward and backward propagation!

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 11 / 48

Our First Deep NN Training

Binary Classification via FNN: Forward Pass
Forward pass is very straightforward: say we are at iteration t

1 For each pixel vector xb, we determine z1 as
x Ð

„

1
xb

ȷ

ù z1 “ W
ptq
1 x

The output of first layer is then given by y1 “ rpz1q: r p¨q is ReLU, so

we keep positive entries of z1 and replace negative ones with zero

2 We add 1 at index 0 of y1 and determine z2 as
y1 Ð

„

1
y1

ȷ

ù z2 “ W
ptq
2 y1

The output of second layer is given by y2 “ rpz2q

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 12 / 48

Our First Deep NN Training

Binary Classification via FNN: Forward Pass
3 We add 1 at index 0 of y2 and determine z3 as

y2 Ð

„

1
y2

ȷ

ù z3 “ w
ptq
3

T
y2

The network output is given by y3 “ spz3q: s p¨q is step function, so

it’s 0 if z3 is negative, and 1 if it is not negative

At this point, we have all that we need, i.e.,

x, z1, y1, z2, y2, z3 and y3

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 13 / 48

Our First Deep NN Training

Binary Classification via FNN: Training
How does the graph look like on the backward pass?

x z1 y1 z2 y2 z3 y3

data-point pxb, vbq L p¨, vbq R̂b

W1 r p¨q W2 r p¨q wT
3 s p¨q 9L

9s9r9r w3WT
2

Let’s move backward!

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 14 / 48

Our First Deep NN Training

Binary Classification via FNN: Backward Pass
We know all the derivatives, i.e.,

9L py, vbq “
d

dy
1 ty ‰ vbu 9s pzq “

d

dz
s pzq 9r pzq “

d

dz
r pzq

For backward pass we start at node y3:
1 We find derivative w.r.t. output à

y 3 “ 9Lpy3, vbq and set
à
z 3 “

à
y 3 9spz3q

2 We compute à
y2 “ w3

à
z 3 and drop its first entry; then, compute

à
y2 Ð

« —-à
y 2r0s—-

à
y2r1 :s

ff

ù
à
z 2 “ 9rpz2q d

à
y2

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 15 / 48

Our First Deep NN Training

Binary Classification via FNN: Backward Pass
3 We compute à

y1 “ WT
2

à
z 2 and drop its first entry; then, compute

à
y1 Ð

« —-à
y 1r0s—-

à
y1r1 :s

ff

ù
à
z 1 “ 9rpz1q d

à
y1

At this point, we can calculate all gradients

G1,b “ ∇W1R̂b “
à
z 1y

T
0 “

à
z 1x

T

G2,b “ ∇W2R̂b “
à
z 2y

T
1

gT
3,b “ ∇wT

3
R̂b “

à
z 3y

T
2

All done! We repeat it for every image in the batch and then average gradients.
Finally, we move one step in gradient descent and find the weights of the next
iteration

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 16 / 48

Our First Deep NN Training

Binary Classification via FNN: Differentiability Issue
+ Where is then the issue with perceptron and indicator error?
– 9L py, vbq and 9s pzq are not well-defined!

ë Recall that they are discontinuous

In fact, the empirical risk is not a smooth function of the weights and biases;
therefore, using gradient descent we do not end up with a well-trained network
+ How can we get over it?
– Well! There is a very well-established trick!

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 17 / 48

Our First Deep NN Training

Binary Classification via FNN: Differentiability Issue
We first replace the perceptron with a neuron whose activation is a goodapproximation of step function and differentiable1

We already have seen the sigmoid function

σ pxq “
1

1 ` e´x

which looks pretty close to step function

x

σ pxq

x

s pxq

Using sigmoid instead of step function resolves the differentiability issue
1Or at least, we can easily calculate a sub-gradient for it

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 18 / 48

Our First Deep NN Training

Binary Classification via FNN: Differentiability Issue
But, replacing perceptron by sigmoid-activated neuron makes a new problem

The output of the network is now not binary!

How can we address this problem?

We now interpret the output as probability, i.e.,

y3 is the probability of the label being 1

+ OK! But how can we define the loss now?
– Well! We could look at the true label from the same point of view
Say v P t0, 1u is true label: if v “ 1 then the true label is 1with probability
1; if v “ 0 then the true label is 1 with probability 0. So, we could say

the true label is 1 with probability v

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 19 / 48

Our First Deep NN Training

Binary Classification via FNN: Differentiability Issue
true label is 1 with probability v ú y3 is probability of the label being 1

Apparently, v and y3 are of the same nature: we can still define a loss that
evaluates the difference between y3 and v
+ What should be the loss then?
– Definitely not the indicator error!
Indicator error is not suitable because

1 we already now that it is not differentiable
2 more importantly, with sigmoid activation becomes useless

1 tσ pz3q ‰ 1u “ 1 tσ pz3q ‰ 0u “ 1

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 20 / 48

Our First Deep NN Training

Binary Classification via FNN:MSE

One may suggest that we use the squared error, i.e.,

L py3, vq “ py3 ´ vq
2

in this case the empirical risk is called

Mean Squared Error (MSE)

This loss is differentiable
9L py3, vq “ 2 py3 ´ vq

and proportional to the distance between y3 and v

It’s a good choice but not best

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 21 / 48

Our First Deep NN Training

Binary Classification via FNN: Cross-Entropy
A better choice is to determine the cross-entropy loss

L py3, vq “ CE py3, vq “ ´v log y3 ´ p1 ´ vq log p1 ´ y3q

“

#

log 1
y3

v “ 1

log 1
1´y3

v “ 0

This loss function is sometimes wrongly called KL-divergence: it is propor-
tional to the Kullback-Leibler divergence but it’s different

This loss is again differentiable
9L py3, vq “ 9CE py3, vq “ ´

v

y3
`

1 ´ v

1 ´ y3

Note: The logarithm is usually in natural base, i.e., log x “ lnx

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 22 / 48

Our First Deep NN Training

Binary Classification via FNN: Cross-Entropy
+ But why cross-entropy is a better loss?
– It pushes y3 more towards the edges of interval r0, 1s

y3

py3 ´ vq
2

v “ 0v “ 1

y3

CE py3, vq

v “ 0v “ 1

Cross entropy returns much higher loss when y3 is different from v

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 23 / 48

Our First Deep NN Training

Binary Classification via FNN: Training with Cross-Entropy
+ What changes in the training loop in this case?
– Pretty much nothing! Just replace

‚ L py3, vq with CE py3, vq

‚ 9L py3, vq with 9CE py3, vq

‚ s pz3q with σ pz3q

‚ 9s pz3q with 9σ pz3q

x z1 y1 z2 y2 z3 y3

data-point pxb, vbq CE p¨, vq R̂b

W1 r p¨q W2 r p¨q wT
3 σ p¨q 9CE

9σ9r9r w3WT
2

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 24 / 48

Our First Deep NN Training

Binary Classification via FNN: Training with Cross-Entropy
+ How do we use the output of network then, when we give a new image to

it for classification? It’s not binary!
– Just follow the interpretation
y3 gives the probability of the image being hand-written “2”; therefore,
p1 ´ y3q gives the probability of image being any other hand-written num-
ber. So, we select the outcome with higher chance, i.e.,

‚ if y3 ě 0.5, we label the new image as a hand-written “2”
‚ if y3 ă 0.5, we label the new image as not being a hand-written “2”

+ Can’t we classify more classes? Like hand-written “0”, “1”, . . ., “9”?
– Now that we have this nice interpretation: Yes! We can!

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 25 / 48

Our First Deep NN Multiclass Classification

Multiclass Classification
We initially saw that any multiclass classification can be seen as a sequence
of binary classifications; however, for that, we need multiple NNs!
+ Why not follow the same idea and determine the probability of input

belonging to each class?
– Yes! That’s actually the effective way!

Let’s get back to our image recognition, but now with multiple classes!
We have images of hand-written numbers from “0” to “9” and want to
train a NN that recognizes any hand-written number

We first draw our earlier FNN

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 26 / 48

Our First Deep NN Multiclass Classification

Multiclass Classification via FNN

x1

...
xN

layer 0

r

...

r

layer 1

r

...

r

layer 2

σ

layer 3

y3

In this FNN, y3 is interpreted as a probability of label being 1
probability of label being 0 is hence 1 ´ y3

This was done by a standard single-output neuron, since we had only 2 classes

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 27 / 48

Our First Deep NN Multiclass Classification

Multiclass Classification via FNN

x1

...
xN

layer 0

r

...

r

layer 1

r

...

r

layer 2

F

layer 3

y3 r1s

y3 rCs

With C classes, we need a module that computes probabilities of all C classes

this module can be seen as a neuron with vector output

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 28 / 48

Our First Deep NN Multiclass Classification

Multiclass Classification: Vector-Activated Neuron
Vector-Activated Neuron
A vector-activated neuron is an artificial neuron with multivariate activation
function: let x P RN be the input to this neuron and C be its output dimension;
then, the output vector y P RC is given by

y “ F
´

W̃x ` b
¯

for weight matrix W̃ P RCˆN , bias b P RC and activation F p¨q : RC ÞÑ R
C

First thing first: let’s get rid of the bias before we go on
y “ F p

”

b W̃
ı

„

1
x

ȷ

q “ F pWxq

So, we keep on with our dummy 1 input here as well

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 29 / 48

Our First Deep NN Multiclass Classification

Multiclass Classification: Vector-Activated Neuron

x1

1

...
xN

F

y r1s

y rCs

Next, let’s see how its computation graph looks

x z yW F p¨q

This looks exactly like a standard layer with a minor difference

F p¨q does not necessarily perform entry-wise

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 30 / 48

Our First Deep NN Multiclass Classification

Multiclass Classification: Softmax
A very well-known example of vector activation is softmax

x1

1

...
xN

So
ft m

a
x

y r1s

y rCs

Softmax Function
For z P RC , softmax function returns Softmax pzq “ y P RC whose entry c is

y rcs “
ezrcs

C
ÿ

j“1

ezrjs

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 31 / 48

Our First Deep NN Multiclass Classification

Multiclass Classification: Softmax
Softmax always returns a probability distribution on the set of classes

C
ÿ

c“1

y rcs “

C
ÿ

c“1

ezrcs

C
ÿ

j“1

ezrjs

“

C
ÿ

c“1

ezrcs

C
ÿ

j“1

ezrjs

“ 1

We can hence use it to extend our FNN to a multiclass classifier
We replace layer 3with a softmax-activatedmultivariate neuron and treat
its outcome as the chance of input belonging to each class; then, we select
the class with highest chance

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 32 / 48

Our First Deep NN Multiclass Classification

Multiclass Classification via FNN: Softmax Activation

x1

1

...
xN

layer 0

r

1

...

r

layer 1

r

1

...

r

layer 2

So
ft m

a
x

p¨
q

layer 3

y3 r1s

y3 rCs

Let’s try again the forward pass

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 33 / 48

Our First Deep NN Multiclass Classification

Multiclass Classification via FNN: Softmax Activation
Let’s look at the computation graph: for a given data-point pxb, vbq, we have

x z1 y1 z2 y2 z3 y3

data-point pxb, vbq L p¨, vbq R̂b

W1 r p¨q W2 r p¨q W3 Softmax p¨q

Note that the output layer has been changed
‚ We now have a vector z3 P RC

ë So we have a matrix of weightsW3 P RCˆpJ`1q

‚ We now have a vector y3 P RC

‚ We get from z3 to y3 via softmax
ë This is not an entry-wise activation anymore!

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 34 / 48

Our First Deep NN Multiclass Classification

Multiclass Classification via FNN: Softmax Activation
1 For each pixel vector xb, we determine z1 as

x Ð

„

1
xb

ȷ

ù z1 “ W
ptq
1 x

The output of first layer is then given by y1 “ rpz1q

2 We add 1 at index 0 of y1 and determine z2 as
y1 Ð

„

1
y1

ȷ

ù z2 “ W
ptq
2 y1

The output of second layer is given by y2 “ rpz2q

3 We add 1 at index 0 of y2 and determine z3 as
y2 Ð

„

1
y2

ȷ

ù z3 “ W
ptq
3

T
y2

The network output is given by y3 “ Softmax pz3q

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 35 / 48

Our First Deep NN Multiclass Classification

Multiclass Classification: Loss
+ How can we define the loss now? On one side we have a vector of

probabilities; one the other side an integer label!
– Again we need to convert true labels to probabilities

Let’s say we have C classes: the vector of probabilities contains C entries

p “

»

—

–

p1...
pC

fi

ffi

fl

“

»

—

–

Pr timage belongs to class 1u...
Pr timage belongs to class Cu

fi

ffi

fl

If we know that the image b belongs to class vb, we could say that

p of image b “

»

—

—

—

—

—

—

–

p1...
pvb...
pC

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

Pr timage b belongs to class 1u “ 0...
Pr timage b belongs to class vbu “ 1...
Pr timage b belongs to class Cu “ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

0...
1...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 36 / 48

Our First Deep NN Multiclass Classification

Multiclass Classification: Loss
So, we could say that label v is corresponding to a vector of sizeC whose entry
v is 1 and the remaining entries are all 0: this vector is called a one-hot vector
One-hot Vector
The one-hot vector 1v P t0, 1u

C is a C-dimensional vector whose entry v is 1
and all remaining entries are 0

For instance: say C “ 3; then, we have

11 “

»

–

1
0
0

fi

fl 12 “

»

–

0
1
0

fi

fl 13 “

»

–

0
0
1

fi

fl

Moral of Story
We can interpret true label v as a probability vector 1v

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 37 / 48

Our First Deep NN Multiclass Classification

Multiclass Classification: Loss
We can interpret true label v as a probability vector 1v

Now for image b with label vb we compare network’s output y3 to 1vb

R̂b “ L py3,1vbq

for loss L p¨q that determines distance between two probability vectors
+ What kind of loss functions do we use usually?
– Like binary case: squared error is good, cross-entropy is the best
+ How do we define them in this case?
– Just extend them to multi-dimensional vectors

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 38 / 48

Our First Deep NN Multiclass Classification

Multiclass Classification: Loss
We can extend squared error to vector form as

L py,1vq “ ∥y ´ 1v∥2 “

C
ÿ

c“1

py rcs ´ 1 tc “ vuq
2

“

C
ÿ

c“1,c‰v

y rcs2 ` py rvs ´ 1q
2

This gradient of this loss is

∇L py,1vq “ 2

»

—

—

—

—

—

—

–

y r1s...
y rvs ´ 1...
y rCs

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ 2 py ´ 1vq

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 39 / 48

Our First Deep NN Multiclass Classification

Multiclass Classification: Loss
Cross entropy can also be extended as follows

L py,1vq “ CE py,1vq “ ´

C
ÿ

c“1

1 tc “ vu log y pcq

“ ´ log y rvs

The gradient of this loss is

∇L py,1vq “ ∇CE py,1vq “

»

—

—

—

—

—

—

–

0...
´1{y rvs...

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ ´
1

y rvs
1v

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 40 / 48

Our First Deep NN Multiclass Classification

Backpropagation Through Vector Activation
How can we backpropagate through this neural network?

x z1 y1 z2 y2 z3 y3

data-point pxb, vbq L p¨, vbq R̂b

W1 r p¨q W2 r p¨q W3 Softmax p¨q
∇y3L

WT
3

9rWT
2

9r ?
1 Compute∇y3R̂b “ ∇y3L py3,1vbq

2 Compute∇z3R̂b from∇y3R̂b by its backward link that we don’t know yet

3 Compute∇y2R̂b “ WT
3∇z3R̂b

4 Remove entry at index 0 of∇y2R̂b and compute∇z2R̂b “ 9r pz2q d ∇y2R̂b

5 Compute∇y1R̂b “ WT
2∇z2R̂b

6 Remove entry at index 0 of∇y1R̂b and compute∇z1R̂b “ 9r pz1q d ∇y1R̂b

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 41 / 48

Our First Deep NN Multiclass Classification

Backpropagation Through Vector Activation
How is∇z3R̂b related to∇y3R̂b? Let’s do what we did before

In this graph, F p¨q is a vector activation. We know∇yR̂

z y R̂
F L

∇yR̂

We want to find∇zR̂

As mentioned before: we can always extend things entry-wise
With vector activation, we need to use the notion of Jacobian

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 42 / 48

Our First Deep NN Multiclass Classification

Recap: Jacobian Matrix
Consider vector activation F p¨q that maps C-dimensional ÞÑ C-dimensional

»

—

–

y1...
yC

fi

ffi

fl

“ F p

»

—

–

z1...
zC

fi

ffi

fl

q

When we use this function, we can say

Any entry yj is function of alla z1, . . . , zC , so we have

∇zyj “

»

—

–

Byj{Bz1...
Byj{BzC

fi

ffi

fl

aIt is not any more an entry-wise functional operation

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 43 / 48

Our First Deep NN Multiclass Classification

Recap: Jacobian Matrix
Consider vector activation F p¨q that maps C-dimensional ÞÑ C-dimensional

»

—

–

y1...
yC

fi

ffi

fl

“ F p

»

—

–

z1...
zC

fi

ffi

fl

q

When we use this function, we can say

We can collect all these gradients into a matrix

Jzy “ JzF “

»

—

–

∇zy1
T

...
∇zyC

T

fi

ffi

fl

“

»

—

–

By1{Bz1 . . . By1{BzC... ...
ByC{Bz1 . . . ByC{BzC

fi

ffi

fl

and we call it the Jacobian matrix

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 44 / 48

Our First Deep NN Multiclass Classification

Backpropagation Through Vector Activation
Now, let’s get back to our problem

In this graph, F p¨q is a vector activation. We know∇yR̂

z y R̂
F L

∇yR̂

We want to find∇zR̂: let’s write down a partial derivative R̂ w.r.t. zc
BR̂

Bzc
“

C
ÿ

j“1

BR̂

Byj

Byj
Bzc

“

”

By1
Bzc

. . . ByC
Bzc

ı

looooooooomooooooooon

transpose of column c of Jzy ” row c of JT
zy

∇yR̂

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 45 / 48

Our First Deep NN Multiclass Classification

Backpropagation Through Vector Activation
So, the gradient of R̂ w.r.t. z is given by

∇zR̂

»

—

–

BR̂{Bz1...
BR̂{BzC

fi

ffi

fl

“

»

—

–

row 1 of JT
zy∇yR̂...

row C of JT
zy∇yR̂

fi

ffi

fl

“

´

JT
zy

¯

∇yR̂

So, we can complete the computation graph as follows

z y R̂
F L

∇yR̂JT
zy

Backward Pass of Vector Activation
To pass backward on a vector activation, we use the transpose of its Jacobian

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 46 / 48

Our First Deep NN Multiclass Classification

Backpropagation Through Vector Activation
How can we backpropagate through this neural network? Let’s complete

x z1 y1 z2 y2 z3 y3

data-point pxb, vbq L p¨, vbq R̂b

W1 r p¨q W2 r p¨q W3 Softmax p¨q
∇y3

L

WT
3

9rWT
2

9r
JSoftmax

T

1 Compute∇y3R̂b “ ∇y3L py3,1vbq

2 Compute∇z3R̂b “ pJSoftmaxq
T ∇y3R̂b

3 Compute∇y2R̂b “ WT
3∇z3R̂b

4 Remove entry at index 0 of∇y2R̂b and compute∇z2R̂b “ 9r pz2q d ∇y2R̂b

5 Compute∇y1R̂b “ WT
2∇z2R̂b

6 Remove entry at index 0 of∇y1R̂b and compute∇z1R̂b “ 9r pz1q d ∇y1R̂b

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 47 / 48

Our First Deep NN Training with Realistic Datasets

Multiclass Classification via FNN: Training
Let’s now recall gradient descent for training of multiclass classifier

GradientDescent():
1: Initiate with some initial values tW

p0q

1 ,W
p0q

2 ,W
p0q

3 u and set a learning rate η2: while weights not converged do3: for b “ 1, . . . , B do4: NN.values Ð ForwardProp pxb, tW
ptq

1 ,W
ptq

2 ,W
ptq

3 uq

5: tG1,b,G2,b,G3,bu Ð BackProp pxb, vb, tW
ptq

1 ,W
ptq

2 ,W
ptq

3 u, NN.valuesq6: end for7: Update
W1

pt`1q
Ð W1

ptq
´ η mean pG1,1, . . . ,G1,Bq

W2
pt`1q

Ð W2
ptq

´ η mean pG2,1, . . . ,G2,Bq

W3
pt`1q

Ð W3
ptq

´ η mean pG3,1, . . . ,G3,Bq

8: end while

We call this form of gradient descent full-batch
Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 48 / 48

	Our First Deep NN
	Training
	Multiclass Classification
	Training with Realistic Datasets

