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Training FNN

Fully-Connected FNNs: Training
+ So, what do we do with forward pass?
– Say the FNN is fixed and all the weights and biases are given. Forwardpass determines the label of a given data-point x.
+ Well! But we need to train the network! Right?!
– Yes! We define the loss and then train it via gradient descent
+ Then, we need to determine the gradient! It sounds complicated!
– Well! there is an efficient algorithm for that called backpropagation

Let’s see what backpropagation is!
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Training FNN

Fully-Connected FNNs: Training
Let’s recall how we train the network: in our FNN, we consideredM outputs;thus, we could assume that the dataset is of the form

D “ tpxb,vbq for b “ 1, . . . , Bu

Here, we have denoted the true labels by vb “ rvb,1, . . . , vb,M s
T to avoidconfusion with the FNN’s outputs. Now, let’s denote the forward pass by

yb “ PassF pxb|wq withw is a vector collecting tWℓu for ℓ “ 1, . . . , L ` 1

Given data-point xb, by forward pass we get yb at the output layer of the
FNN with weightsw. This output is desired to be the true label vb

How do we do the training?

w‹ “ argmin
w

R̂ pwq “ argmin
w

1

B

B
ÿ

b“1

L pyb,vbq (Training)
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Training FNN

Fully-Connected FNNs: Training
Let’s recall how we train the network

w‹ “ argmin
w

R̂ pwq “ argmin
w

1

B

B
ÿ

b“1

L pyb,vbq

“ argmin
w

1

B

B
ÿ

b“1

L pPassF pxb|wq ,vbq

1: Initiate at somewp0q
P R

D and deviation∆ “ `82: Choose some small ϵ and η, and set t “ 13: while∆ ą ϵ do4: Update weights aswptq
Ð wpt´1q

´η∇R̂pwpt´1q
q5: Update the deviation∆ “ |R̂pwptq

q ´ R̂pwpt´1q
q|6: end while

In this algorithm, the main challenge is to calculate∇R̂pwpt´1qq
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Training FNN Computation Graph

Fully-Connected FNNs: Training
The main challenge is to calculate∇R̂pwq

First, let’s see what are the entries ofw: w contains all weights and biases.
Following our notations, we can say

w “

»

—

—

—

—

—

—

—

—

—

—

—

–

w1 r1, :s...
w1 rW1, :s...
wL`1 r1, :s...

wL`1 rWL`1, :s

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

wℓ rj, :s “

»

—

—

—

–

wℓ rj, 0s

wℓ rj, 1s...
wℓ rj,Wℓ´1s

fi

ffi

ffi

ffi

fl

layer ℓ “ 1

layer ℓ “ L ` 1

So, the entries ofw are wℓ rj, is for different choices of i, j and ℓ
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Training FNN Computation Graph

Fully-Connected FNNs: Training
The main challenge is to calculate∇R̂pwq

Let’s try to open up the gradient: we need partial derivatives of R̂pwq with
respect to wℓ rj, is for i “ 0 : Wℓ´1, j “ 1 : Wℓ, and ℓ “ 1 : L ` 1

B

Bwℓ rj, is
R̂pwq “

B

Bwℓ rj, is

1

B

B
ÿ

b“1

L pyb,vbq

“
1

B

B
ÿ

b“1

B

Bwi,j rℓs
L pyb,vbq

So, it’s enough to develop an algorithm that computes partial derivative for a
single data-point. Derivative of the risk is then average of these point-wise
derivatives.
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Training FNN Computation Graph

Fully-Connected FNNs: Training
Let’s make an agreement: we consider a data-pointxwith labelv andwrite

B

Bwℓ rj, is
L pPassF px|wq ,vq “

B

Bwℓ rj, is
L py,vq

while keeping in mind that y is a function ofw

To determine the partial derivatives, we note that
y is a nested function ofw

so, we can determine the derivative via chain rule. Let’s recall the chain ruleand see how we can apply it on a graph
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Training FNN Computation Graph

Review: Chain Rule
Assume z “ gpxq and y “ fpzq: y is a nested function of x, as we can write

y “ fpgpxqq

Intuitively, we can say: if at point x we move with tiny step dx, z varies as

dz “ 9gpxqdx

This variation also varies y: moving from z “ gpxq with tiny step dz leads to

dy “ 9fpzqdz

So, we have
dy “ 9fpzq 9gpxqdx
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Training FNN Computation Graph

Review: Chain Rule
We have concluded that by moving x with dx, we get

dy “ 9fpzq 9gpxqdx

On the other hand, we know that
dy “

d

dx
fpgpxqqdx

This concludes the chain rule
Chain Rule: Scalar Form
The derivative of nested function y “ fpgpxqq with respect to x is given by

dy

dx
“

d

dx
fpgpxqq “ 9fpzq 9gpxq “

dy

dz

dz

dx
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Training FNN Computation Graph

Computation Graph
We can extend this idea to deeper nested functions:

Let z1 “ g1pxq and zn`1 “ gn`1pznq for n “ 1, . . . , N ´ 1; then,
derivative of y “ fpzN q with respect to x is given by

dy

dx
“

dy

dzN

˜

N´1
ź

n“1

dzn`1

dzn

¸

dz1
dx

“ 9fpzN q

˜

N´1
ź

n“1

9gn`1pznq

¸

9g1pxq

We can represent the chain rule, using a computation graph: for the deep
nested function given above, the computation graph is given by

x z1 . . . zN y
g1 g2 gN f

In this graph, we start from x and pass forward to z1 Ñ z2 Ñ . . . until we get
to y. In each pass, we determine next variable via the function on the link
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Training FNN Computation Graph

Computation Graph
The derivative of y with respect to any variable on this graph is determinedby a backward pass from y towards the variable

x z1 . . . zN y
g1 g2 gN f

9g1 9g2 9gN 9f

dy

dzN
“ 9f pzN q

dy

dzN´1
“

dy

dzN

dzN
dzN´1

“ 9f pzN q 9gN pzN´1q

...
dy

dz1
“

dy

dzN

dzN
dzN´1

. . .
dz2
dz1

“ 9f pzN q 9gN pzN´1q . . . 9g2 pz2q

dy

dx
“

dy

dzN

dzN
dzN´1

. . .
dz2
dz1

dz1
dx

“ 9f pzN q 9gN pzN´1q . . . 9g2 pz2q 9g1 pxq
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Training FNN Computation Graph

Computation Graph: Example
Example: y is a nested function of x through the following chain of functions:

z1 “ 2x z2 “ z21 z3 “ ez2 y “ log z3

Determine the derivative of y with respect to x at x “ 0.5.

Let’s first plot the computation graph
x z1 z2 z3 y2x z21 ez2 log z3

During the forward pass we get
z1 “ 2 ˆ 0.5 “ 1 Ñ z2 “ 12 “ 1 Ñ z3 “ e1 “ e Ñ y “ log e “ 1

0.5 1 1 e 1
2x z21 ez2 log z3
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Training FNN Computation Graph

Computation Graph: Example
Now, we pass backward to determine the derivative

x z1 z2 z3 y2x z21 ez2 log z3

2 2z1 ez2 1{z3

Let’s first enter the values into the backward links
0.5 1 1 e 1

2x

2 2

z21 ez2

e

log z3

1{e

We now navigate backward to each variable that we want to determine thederivative y with respect to it
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Training FNN Computation Graph

Computation Graph: Example
0.5 1 1 e 1

2x

2 2

z21 ez2

e

log z3

1{e

The derivatives are easily determined recursively

dy

dz3
“

1

e
dy

dz2
“

dy

dz3

dz3
dz2

“
e

e
“ 1

dy

dz1
“

dy

dz2

dz2
dz1

“ 1 ˆ 2 “ 2

dy

dx
“

dy

dz1

dz1
dx

“ 2 ˆ 2 “ 4
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Training FNN Computation Graph

Computation Graph
x z1 . . . zN y

g1

9g1 9g2

g2 gN

9gN

f

9f

In the example, we had to first compute the value of each variable, in order tobe able to compute the values of the backward links
This is an important fact that we should remember

Backward pass is only possible if we have already taken the forward pass
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Training FNN Computation Graph

Review: Chain Rule
The nested function can be a multivariate: assume for n “ 1, . . . , N

zn “ gnpxq

and let the nested function be

y “ fpz1, . . . , zN q

Let’s follow the same logic: starting from point x, we move with tiny step dx

dzn “ 9gnpxqdx

These variations lead to variation dy in the nested function

dy “ ∇f pzq
T dz “

N
ÿ

n“1

By

Bzn
dzn “

N
ÿ

n“1

9fn pzq dzn
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Training FNN Computation Graph

Review: Chain Rule
We can hence write

dy “

N
ÿ

n“1

9fn pzqdzn “

N
ÿ

n“1

9fn pzq 9gnpxqdx

This concludes the vector form of the chain rule
Chain Rule: Vector Form
Let z “ rz1, . . . , zN s

T and zn “ gn pxq. The derivative of nested function
y “ fpzq with respect to x is given by

dy

dx
“

N
ÿ

n“1

By

Bzn

dzn
dx

“

N
ÿ

n“1

9fn pzq 9gnpxq
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Training FNN Computation Graph

Computation Graph
We can again represent the function via its vectorized computation graphand compute it by passing forward on this graph

x

z1

z2

...
zN

y

g1

g2

gN

f

f

f

We start from x and pass forward to z “ rz1, z2, . . . , zN s. We then pass
forward z to y. In each pass, we compute next variable via function on the link.
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Training FNN Computation Graph

Computation Graph
The derivative with respect to any node is then given by backward pass
towards the node on the computation graph

x

z1

z2

...
zN

y

g1

g2

gN

f

f

f9gN

9g2

9g1 9f1

9f2

9fN

We add all backward passes towards x to determine the derivative

dy

dx
“

N
ÿ

n“1

By

Bzn

dzn
dx

“

N
ÿ

n“1

9fn pzq 9gnpxq
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Training FNN Computation Graph

Computation Graph: Single Neuron
Let’s now plot the computation graph of a single neuron and determine thegradient of the loss by backward pass

x1

...
xN

`

w1

wN

b

f p¨q
z y ”

x1

...
xN

f

w1

wN

b

y

After passing the data-point x through the neuron, we get y and wecalculate the loss for the true label v as L py, vq
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Training FNN Computation Graph

Computation Graph: Single Neuron
The computation graph is hence given by

b

w1

...
wN

z

ˆpx0 “ 1q

ˆx1

ˆxN

y R̂
f L py, vq

Here, the computation nodes are the weights and bias of the neuron
once we fix them, we can pass forward and get to the loss R̂
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Training FNN Computation Graph

Computation Graph: Single Neuron
Once passed forward, we can move backward to determine the derivatives

b

w1

...
wN

z

ˆx0

1 “ x0

ˆx1x1

ˆxN

xN

y R̂
f

9f

L py, vq

9L

For a particular weight wn, we can write (we drop arguments whenever clear)

BR̂

Bwn
“

dR̂

dy

dy

dz

Bz

Bwn
“ 9L 9fxn
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Training FNN Computation Graph

Computation Graph: Multivariate Form
Let’s get back to the following computation graph

x

z1

z2

...
zN

y

g1

g2

gN

f

f

f

We define vector-valued functions, and show the graph compactly: let’s define

g pxq “

»

—

–

g1 pxq...
gN pxq

fi

ffi

fl
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Training FNN Computation Graph

Computation Graph: Multivariate Form
Function g p¨q gets x as the input and returns all zn’s in a vector z, i.e.,

g pxq “

»

—

–

g1 pxq...
gN pxq

fi

ffi

fl

“

»

—

–

z1...
zN

fi

ffi

fl

“ z

We now use this vectorized notation to simplify the computation graph as
x z y

g f

The forward pass on this graph is exactly the same: we give x to the
vectorized function g p¨q to get z which is then passed forward to f p¨q to get y

How does the backward pass look like then?
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Training FNN Computation Graph

Computation Graph: Multivariate Form
We could define the derivative 9g p¨q as the vector of derivatives 9g p¨q

9g pxq “

»

—

–

9g1 pxq...
9gN pxq

fi

ffi

fl

“

»

—

–

dz1
dx...
dzN
dx

fi

ffi

fl

“
dz

dx

Let’s show this vectorized derivative and gradient of f on the backward links

x z y
g f

9g ∇f

Well, we can pass backward as follows
dy

dx
“

N
ÿ

n“1

By

Bzn

dzn
dx

“ ∇f pzq
T

9g pxq
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Training FNN Computation Graph

Computation Graph: Multivariate Form
+ What can we conclude then?
– We can sketch the computation graph very compactly using vectorized

derivatives and gradients
+ Does it mean that we should then pass backward exactly the same as in a

computation graph with scalar variables and derivatives?
– Pretty much Yes! Only one delicate detail: we should know how to

multiply those gradients and vectorized derivatives!

x z y
g f

9g ∇f

In our example, we determined the inner product

dy

dx
“ ∇fT 9g
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Training FNN Computation Graph

Computation Graph: Multivariate Form
+ How do we know which type of product we should use?
– Well! If you were in doubt, we could always do it by expanding interms of entries; however, we are going to practice all key functions that

appear in NN computation graphs!
Before we start with all key functions, let’s get back to a single neuron

b

w1

...
wN

z

ˆx0

ˆx1

ˆxN

y R̂
f L py, vq
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Training FNN Computation Graph

Computation Graph: Multivariate Form
Let’s define, as we did earlier, the following vectors

x “

»

—

—

—

–

x0 “ 1
x1...
xN

fi

ffi

ffi

ffi

fl

and w “

»

—

—

—

–

w0 “ b
w1...
wN

fi

ffi

ffi

ffi

fl

Recall that output of the neuron is determined as y “ f pzq for

z “ xTw

So, we can show the computation graph compactly as

w z
xT

y R̂
f L py, vq
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Training FNN Computation Graph

Computation Graph: Multivariate Form
Let’s look at each link carefully: we pass backward, so we start with last link

w z
xT

y R̂
f L py, vq

‚ R̂ is a scalar function of scalar y, i.e., R̂ “ L py, vq

ë the backward link contains the scalar derivative 9L
‚ y is a scalar function of scalar z, i.e., y “ f pzq

ë the backward link contains the scalar derivative 9f
‚ z is a scalar function of vector w, i.e., z “ xTw

ë the backward link contains the gradient∇z

So, the graph with the backward links looks like
w z

xT

∇z

y R̂
f

9f

L py, vq

9L
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Training FNN Computation Graph

Computation Graph: Multivariate Form

w z
xT

∇z

y R̂
f

9f

L py, vq

9L

We are almost complete; only we need to calculate∇z

z “ w0 ` w1x1 ` . . . ` wNxN ù ∇z “

»

—

—

—

–

Bz{Bw0

Bz{Bw1...
Bz{Bw1

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

1 “ x0
x1...
xN

fi

ffi

ffi

ffi

fl

“ x

So, we are complete! Here is the vectorized computation graph of the neuron
w z

xT

x

y R̂
f

9f

L py, vq

9L
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Training FNN Computation Graph

Computation Graph: Multivariate Form
Now, how do we pass backward on this graph?

w z
xT

x

y R̂
f

9f

L py, vq

9LWe arrived at y at the end of forward pass: at this point, we can determine
dR̂

dy
“ 9L py, vq “ 9L

and we are at the computing node y. We then pass backward 9L. At node z, we
can compute 9f pzq, and use what we received from y to compute

dR̂

dz
“

dL

dy

dy

dz
“ 9f 9L

and pass it backward
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Training FNN Computation Graph

Computation Graph: Multivariate Form
Now, how do we pass backward on this graph?

w z
xT

x

y R̂
f

9f

L py, vq

9L

Arriving atw, we can determine∇z “ x and use what we received from z to
compute what we want

∇R̂ w.r.t. w ” ∇wR̂ “
dR̂

dz
∇z “ 9f 9Lx

+ Well! That seems easier!
– Right! Let’s now try some important cases
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Training FNN Backpropagation

Backpropagation: Local Operations
Let’s consider a general problem: an objective scalar R̂ is a function of
K-dimensional vector y P RK . Clearly in this case, we have a gradient

∇yR̂ “

»

—

–

BR̂{By1...
BR̂{ByK

fi

ffi

fl

Assume that we know this gradient. The vector y is also function of another
variable. We want to compute gradient of R̂ with respect to this other variable

y R̂
. . .

∇yR̂

We now consider different cases for the other variable and its link to y
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Training FNN Backpropagation

Backpropagation: Local Operation 1
Entry-wise Functional Operation
y P RK is a function of z P RK as y “ f pzq with f p¨q operating entry-wise

z y R̂
f p¨q

∇yR̂

For this case, we note that yk is only a function of zk; thus we have
BR̂

Bzk
“

BR̂

Byk

Byk
Bzk

“
BR̂

Byk
9f pzkq

So, we can use entry-wise product d to get from∇yR̂ to∇zR̂

∇zR̂ “ ∇yR̂ d 9f pzq
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Training FNN Backpropagation

Backpropagation: Local Operation 1
Reminder: Entry-wise product of two vectors of the same size is

z d y

»

—

–

z1...
zK

fi

ffi

fl

d

»

—

–

y1...
yK

fi

ffi

fl

“

»

—

–

y1z1...
yKzK

fi

ffi

fl

So, we can compactly perform this local operation as follows
z y R̂

f p¨q

9f p¨q ∇yR̂

with the backward step

∇zR̂ “ ∇yR̂ d 9f pzq
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Training FNN Backpropagation

Backpropagation: Local Operation 2
Linear Vector-to-Vector Operation

y P RK is a function of z P RN as y “ Az withA P RKˆN

z y R̂
A

∇yR̂

Here, yk is a linear function of z1, . . . , zN
yk “

N
ÿ

n“1

A rk, ns zn

whereA rk, ns is entry ofA at row k and column n. We thus can write
BR̂

Bzn
“

K
ÿ

k“1

BR̂

Byk

Byk
Bzn

“

K
ÿ

k“1

BR̂

Byk
A rk, ns
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Training FNN Backpropagation

Backpropagation: Local Operation 2
Let’s denote column n ofA by notationA r:, ns; so, we can write

BR̂

Bzn
“

K
ÿ

k“1

BR̂

Byk
A rk, ns “ A r:, ns

T∇yR̂

Now, if we collect them in a vector form we get

∇zR̂ “

»

—

–

BR̂{Bz1...
BR̂{BzN

fi

ffi

fl

“

»

—

–

A r:, 1s
T

...
A r:, N s

T

fi

ffi

fl

∇yR̂ “ AT∇yR̂

This makes sense! Since we are changing dimensions froK toN , we need
a product that does such dimensionality change for us
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Training FNN Backpropagation

Backpropagation: Local Operation 2
Long story short . . .

z y R̂
A

AT ∇yR̂

with backward step

∇zR̂ “ AT∇yR̂
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Training FNN Backpropagation

Backpropagation: Local Operation 3
Linear Matrix-to-Vector Operation

y P RK is a function ofA P RKˆN as y “ Ax with x P RN

A y R̂
x

∇yR̂

+ Wait a moment! The other variable is a matrix! How do we define∇AR̂?
– Right! Let’s first extend the definition
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Training FNN Backpropagation

Backpropagation: Local Operation 3
Assume scalar R̂ is a function of matrixA P RKˆN , we define

∇AR̂ “

»

—

–

BR̂{BA r1, 1s . . . BR̂{BA r1, Ns... ...
BR̂{BA rK, 1s . . . BR̂{BA rK,Ns

fi

ffi

fl

withA rk, ns being the entry ofA at row k and column n

It is worth to also think of gradient descent in this case: assume we are
minimizing R̂ overA using gradient descent with learning rate η. At iteration t
we got pointAptq; now, in the next iteration we can readily write

Apt`1q “ Aptq ´ ∇AR̂|A“Aptq

so apparently everything is as before!
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Training FNN Backpropagation

Backpropagation: Local Operation 3
Back to our problem, we can write

A y R̂
x

∇yR̂

Entry k of y is a linear function of the k-th row ofA, i.e.,
yk “

N
ÿ

n“1

xnA rk, ns

So, we can write
BR̂

BA rj, ns
“

K
ÿ

k“1

BR̂

Byk

Byk
BA rj, ns

“

K
ÿ

k“1

BR̂

Byk
1 tk “ juxn “

BR̂

Byj
xn

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 41 / 55



Training FNN Backpropagation

Backpropagation: Local Operation 3
Let’s now put them in a matrix

∇AR̂ “

»

—

—

–

BR̂
By1

x1 . . . BR̂
By1

xN... ...
BR̂

ByK
x1 . . . BR̂

ByK
xN

fi

ffi

ffi

fl

“ ∇yR̂xT

So, we should now apply outer product! This again makes sense!

We have a K-dimensional gradient ∇yR̂ and an N -dimensional vector
x, we need an outer product to convert it into theK ˆ N matrix∇AR̂
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Training FNN Backpropagation

Backpropagation: Local Operation 3
So, we could conclude

A y R̂
x

xT ∇yR̂

with the backward step

∇AR̂ “ ∇yR̂xT

Now, we are ready to “backpropagate” over an FNN
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Training FNN Backpropagation

Backpropagation: Algorithm
Let’s recall the compact diagram of an FNN with L hidden layers

x f1 . . . fL fL`1 yL`1
W1 W2 WL WL`1

We can easily expand it into a computation graph
x z1 y1 . . . zL yL zL`1 yL`1

W1 f1 p¨q fL p¨q WL`1 fL`1 p¨q

Our objective is the empirical risk; so let’s include it also in the graph

x z1 y1 . . . zL yL zL`1 yL`1

data-point px,vq L p¨,vq R̂

W1 f1 p¨q fL p¨q WL`1 fL`1 p¨q
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Training FNN Backpropagation

Backpropagation: Algorithm
Given data-point x and its true label v, we once complete a forward pass

x z1 y1 . . . zL yL zL`1 yL`1

data-point px,vq L p¨,vq R̂

W1 f1 p¨q fL p¨q WL`1 fL`1 p¨q

At the end of forward pass,

we know the value of all variables, i.e., zℓ and yℓ for all ℓ
Now, let’s assume we want to find∇WL`1

R̂
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Training FNN Backpropagation

Backpropagation: Algorithm
We now cut the graph at the linkWL`1

yL zL`1 yL`1

L p¨,vq R̂

WL`1 fL`1 p¨q

Let’s recall . . .
+ what is the variable here?
– It’sWL`1

+ Can we modify the graph such that it becomes a node?
– Sure! We note that zL`1 “ WL`1yL. We can look at it as a linear

matrix-to-vector operation; so, we could modify the graph as
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Training FNN Backpropagation

Backpropagation: Algorithm
Let’s now move backward toWL`1

1 We have yL`1, so we compute∇yL`1R̂, and pass it
2 We have zL`1, so we compute 9fL`1pzL`1q, and then we get

∇zL`1R̂ “ ∇yL`1R̂ d 9fL`1pzL`1q

3 We have yL, so we compute∇WL`1
R̂ from the last pass as

∇WL`1
R̂ “ ∇zL`1R̂ yT

L

WL`1 zL`1 yL`1

L p¨,vq R̂

∇yL`1
R̂

9fL`1 p¨qyT
L

yL fL`1 p¨q
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Training FNN Backpropagation

Backpropagation: Algorithm
We can propagate backward deeper and deeper

‚ We cut at the link that we want to compute the gradient with respect to
‚ We exchange the linear vector-to-vector function at that particular link to
a linear matrix-to-vector function

‚ We move backwards till we get to the source of this graph

Let’s see the example forWL

WL zL yL zL`1 yL`1

L p¨,vq R̂

yL´1 fL p¨q WL`1 fL`1 p¨q
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Training FNN Backpropagation

Backpropagation: Algorithm
We already have passed backward messages till zL`1: we have∇zL`1R̂

1 We now pass∇zL`1R̂ to yL: ∇yLR̂ “ WT
L`1∇zL`1R̂

2 We then pass∇yLR̂ to zL: ∇zLR̂ “ ∇yLR̂ d 9fL

ë We should remove entry of∇yL
R̂ at index 0: we don’t want BR̂{ByL r0s

3 We finally pass∇zLR̂ toWL: ∇WL
R̂ “ ∇zLR̂ yT

L´1

WL zL yL zL`1 yL`1

L p¨,vq R̂

∇yL`1
R̂

9fL`1 p¨qWT
L`1

9fL p¨qyT
L´1

yL´1 fL p¨q WL`1 fL`1 p¨q
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Training FNN Backpropagation

Backpropagation: Algorithm
As we arrive backward at layer ℓ, we already have messages till zℓ`1

1 We pass∇zℓ`1
R̂ to yℓ: ∇yℓ

R̂ “ WT
ℓ`1∇zℓ`1

R̂

2 We then pass∇yℓ
R̂ to zℓ: ∇zℓR̂ “ ∇yℓ

R̂ d 9fℓ

ë We should remove entry of∇yℓ
R̂ at index 0: we don’t want BR̂{Byℓ r0s

3 We finally pass∇zℓR̂ toWℓ: ∇Wℓ
R̂ “ ∇zℓR̂yT

ℓ´1

Wℓ zℓ yℓ zℓ`1 yL`1

L p¨,vq R̂

∇yL`1
R̂

WT
ℓ`1

9fℓ p¨qyT
ℓ´1

yℓ´1 fℓ p¨q Wℓ`1

Once we propagate back to the input, i.e., ℓ “ 1, then we have all gradients!
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Training FNN Backpropagation

Backpropagation: Few Notations
To formally present backpropagation, let us define a few notations

For ℓ “ 1, . . . , L ` 1, we define
à
yℓ “ ∇yℓ

R̂
à
z ℓ “ ∇zℓR̂

and keep in mind that
‚ yℓ and

à
yℓ are totally different things

‚ zℓ and
à
z ℓ are totally different things
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Training FNN Backpropagation

Backpropagation: Pseudo Code
1: Initiate with à

yL`1 “ ∇LpyL`1,vq and à
zL`1 “

à
yL`1 d 9fL`1pzL`1q2: for ℓ “ L, . . . , 1 do3: Determine à

yℓ “ WT
ℓ`1

à
z ℓ`1 and drop à

y ℓ r0s # backward affine
4: Determine à

z ℓ “ 9fℓpzℓq d
à
yℓ # backward activation5: end for6: for ℓ “ 1, . . . , L ` 1 do7: Return∇WℓR̂ “

à
z ℓy

T
ℓ´18: end for

Wℓ zℓ yℓ zℓ`1 zL`1 yL`1

L p¨,vq R̂

∇yL`1
R̂

WT
ℓ`1

9fℓ p¨qyT
ℓ´1

yℓ´1 fℓ p¨q Wℓ`1

9fL`1 p¨q

fL`1 p¨q
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Training FNN Backpropagation

Backpropagation: Pseudo Code
1: Initiate with à

yL`1 “ ∇LpyL`1,vq and à
zL`1 “

à
yL`1 d 9fL`1pzL`1q2: for ℓ “ L, . . . , 1 do3: Determine à

yℓ “ WT
ℓ`1

à
z ℓ`1 and drop à

y ℓ r0s # backward affine
4: Determine à

z ℓ “ 9fℓpzℓq d
à
yℓ # backward activation5: end for6: for ℓ “ 1, . . . , L ` 1 do7: Return∇WℓR̂ “

à
z ℓy

T
ℓ´18: end for

+ This looks very similar to forward propagation! Right?!
– Yeah! Just we go backward! That’s the whole point of backpropagation

You need to go once forth and then back to determine all gradients

Let’s put them next to each other

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 53 / 55



Training FNN Backpropagation

Backpropagation: Pseudo Code
ForwardProp():
1: Initiate with y0 “ x2: for ℓ “ 0, . . . , L do3: Add yℓr0s “ 1 and determine zℓ`1 “ Wℓ`1yℓ # forward affine4: Determine yℓ`1 “ fℓ`1pzℓ`1q # forward activation5: end for6: for ℓ “ 1, . . . , L ` 1 do7: Return yℓ and zℓ8: end for

BackProp():

1: Initiate with à
yL`1 “ ∇LpyL`1,vq and à

zL`1 “
à
yL`1 d 9fL`1pzL`1q2: for ℓ “ L, . . . , 1 do3: Determine à

yℓ “ WT
ℓ`1

à
z ℓ`1 and drop à

y ℓ r0s # backward affine
4: Determine à

z ℓ “ 9fℓpzℓq d
à
yℓ # backward activation5: end for6: for ℓ “ 1, . . . , L ` 1 do7: Return∇WℓR̂ “

à
z ℓy

T
ℓ´18: end for
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Training FNN Backpropagation

Complete Training Loop via Gradient Descent
+ Say we use backpropagation; then, how does gradient descent look?
– Well! We should go back and forth with all data-points

Say we have dataset
D “ tpxb,vbq for b “ 1, . . . , Bu

GradientDescent():
1: Initiate with some initial values tW

p0q

ℓ u and set a learning rate η2: while weights not converged do3: for b “ 1, . . . , B do4: NN.values Ð ForwardProp pxb, tW
ptq

ℓ uq # forward
5: t∇Wℓ

ptqR̂bu Ð BackProp pxb,vb, tW
ptq

ℓ u, NN.valuesq # backward6: end for7: for ℓ “ 1, . . . , L ` 1 do8: Wℓ
pt`1q

Ð Wℓ
ptq

´ η meanp∇Wℓ
ptqR̂1, . . . ,∇Wℓ

ptqR̂Bq9: end for10: end while
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