ECE 1508: Applied Deep Learning
Chapter 2: Feedforward Neural Networks

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Applied Deep Learning Chapter 2: FNNs

mailto:ali.bereyhi@utoronto.ca

Fully-Connected FNNs: Training

+ So, what do we do with forward pass?

Say the FNN is fixed and all the weights and biases are given. Forward
pass determines the label of a given data-point x.

=+

Well! But we need to train the network! Right?!

Yes! We define the loss and then train it via gradient descent
+ Then, we need to determine the gradient! It sounds complicated!

Well! there is an efficient algorithm for that called backpropagation
Let’s see what backpropagation is!

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 2/55

Fully-Connected FNNSs: Training

Let’s recall how we train the network: in our FNN, we considered)M outputs;
thus, we could assume that the dataset is of the form

DZ{(:Bb,’Ub) fOI’bZl,...,B}

Here, we have denoted the true labels by v, = vy 1, ... ,vb7M]T to avoid
confusion with the FNN's outputs. Now, let’s denote the forward pass by
vy = PassF (x,|w) with w is a vector collecting {W,} for¢ =1,..., L+ 1

Given data-point x, by forward pass we get y;, at the output layer of the
FNN with weights w. This output is desired to be the true label v,

How do we do the training?

B
A 1 -
w” = argmin R (w) = argmin — Z L (yp,vp) (Training)
-1

© A. Bereyhi 2024 - 2025 3/55

Fully-Connected FNNs: Training

Let’s recall how we train the network

B
. L p .1
w”* = argmin R (w) = argmin 5 Z L (yp,vp)

B
o1
= argv{,nln B l; L (PassF (xp|w) , vp)

1: Initiate at some w(® € R” and deviation A = +0
2: Choose some small e and 7, and sett = 1

3: while A > edo

4: Update weights as w(¥) — w*=) vV R(w(~Y)
5. Update the deviation A = |R(w®) — R(w(~1)]
6: end while

In this algorithm, the main challenge is to calculate VR(w(—1)

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025

4/55

Fully-Connected FNNs: Training

The main challenge is to calculate V R(w)

First, let's see what are the entries of w: w contains all weights and biases.

Following our notations, we can say

[w1 [17] 1
: layer ¢ = 1
w1 Wi,] we[7,0]
wy [7,1]
W= e >wy[j,:] = _
Wi +1 [1, Z]
layer (= L +1 we [, We—1]
| Wit [Wett,:]

So, the entries of w are wy [, i] for different choices of i, j and ¢

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025

5/55

Fully-Connected FNNs: Training

The main challenge is to calculate V R(w)

Let's try to open up the gradient: we need partial derivatives of R(w) with
respect to wy [j,i| fori =0: Wy 1,7 =1: Wpandl =1:L+ 1

o . o 1
Fa G ™ " B & L0

U:J |

5 P)
Z Wﬁ (Yo, vp)

So, it's enough to develop an algorithm that computes partial derivative for a
‘ single data-point. ‘ Derivative of the risk is then average of these point-wise
derivatives.

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 6/55

Fully-Connected FNNs: Training

Let’s make an agreement: we consider a data-point x with label v and write

0 0
L (PassF (x|w) ,v) = E |

while keeping in mind that y is a function of w

L(y,v)

aw([.77 Z]

To determine the partial derivatives, we note that
y is a nested function of w

so, we can determine the derivative via chain rule. Let’s recall the chain rule
and see how we can apply it on a graph

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 7/55

Review: Chain Rule

Assume z = g(x) and y = f(2): y is a nested function of x, as we can write

y=flg(z))

Intuitively, we can say: if at point x we move with tiny step dz, z varies as

So, we have

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 8/55

N L) Comevtaton Graph
Review: Chain Rule

We have concluded that by moving = with dz, we get

dy = f(2)g(x)dx

On the other hand, we know that

ay = = flg(e))dr

This concludes the chain rule
Chain Rule: Scalar Form

The derivative of nested function y = f(g(x)) with respect to x is given by

Yo L fo@) = file) = LT

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 9/55

Computation Graph

We can extend this idea to deeper nested functions:

let zy = gi(x) and z,+1 = gny1(zn) forn = 1,..., N — 1; then,
derivative of y = f(zx) with respect to x is given by

] 5 o) N-1 ' .
jay; dzn (H dd2:1> d = f(zn) (H gn+1(zn)> g1(z)

We can represent the chain rule, using a computation graph: for the deep
nested function given above, the computation graph is given by

O ENE) ENELN) ENG)

In this graph, we start from x and pass forward to z; — z9 — ... until we get
to y. In each pass, we determine next variable via the function on the link

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 10/55

Computation Graph

The derivative of y with respect to any variable on this graph is determined
by a backward pass from y towards the variable

f
OO SO0
9 g2 gn f

dy = f(2n)

dz N
dy dy dzn

donv_1 denwdin_i f(2n) gn (2n-1)

dy _ dy dew o dz
dzy deyday_q T dz;

dy _ dy dzn dzg dzy o . . .
i Pt Fe T po e f(en)gn (2n-1) - 92 (22) 91 (@)

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 11/55

= f(2n) gn (2n-1) -+ G2 (22)

Computation Graph: Example
Example: vy is a nested function of x through the following chain of functions:
21 =2x zp = 23 z3 = €2 y = log z3

Determine the derivative of y with respect to x at x = 0.5.

Let's first plot the computation graph

2
C 2x <> 2y C > e C)logzs@
During the forward pass we get

z1=2x0.5=1—>z2=12=1—>z3=61=e—>y=loge=1

. 2 C 2 C e Clog«zs@

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 12/55

Computation Graph: Example

Now, we pass backward to determine the derivative
C 2 <> i <> e*2 <>10g23@
2 221 e*? 1/z23
Let’s first enter the values into the backward links
. 2x C Z% C e*? C log 23 @
2 2 e 1/e

We now navigate backward to each variable that we want to determine the
derivative y with respect to it

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 13/55

Computation Graph: Example

OO 00

1/e

The derivatives are easily determined recursively

dy _1

dzs e

dy _dydzs e

dze dzzdze e

dy dy dzg

— = =1x2=2

le dZ2 dz1 %

dy dy dz1

=2x2=4
dr dz1 dz X

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 14/55

Computation Graph

/
Ol @Dl LB L@
g1 g2 ‘ng_/ f

In the example, we had to first compute the value of each variable, in order to
be able to compute the values of the backward links

This is an important fact that we should remember

Backward pass is only possible if we have already taken the forward pass

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 15/55

Review: Chain Rule

The nested function can be a multivariate: assume forn =1,..., N

Zn = gn($)

and let the nested function be

Yy = f(Zl,...,ZN)
Let's follow the same logic: starting from point x, we move with tiny step dx
dz, = gn(z)dx

These variations lead to variation dy in the nested function

dy =V f(z Z aydznzZ:fn(z)dzn

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 16/55

Review: Chain Rule

We can hence write

N N .
Z z)dz, = Z fn (2) gn(x)dz
n=1 n=1

This concludes the vector form of the chain rule
Chain Rule: Vector Form

letz = [z1,...,2x5]" and z, = g, (). The derivative of nested function
y = f(z) with respect to x is given by

dy ol ﬁy dzn
a_n an

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 17/55

Computation Graph

We can again represent the function via its vectorized computation graph
and compute it by passing forward on this graph

We start from x and pass forward to z = [z1, zo, . . ., zn|. We then pass
forward z to y. In each pass, we compute next variable via function on the link.

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 18/55

Training FNN Computation Graph

Computation Graph

The derivative with respect to any node is then given by backward pass
towards the node on the computation graph

N
23
dx = 07

Applied Deep Learning Chapter 2: FNNs

© A. Bereyhi 2024 - 2025 19/55

Training FNN Computation Graph

Computation Graph: Single Neuron

Let's now plot the computation graph of a single neuron and determine the
gradient of the loss by backward pass

After passing the data-point « through the neuron, we get v and we
calculate the loss for the true label v as L (y, v)

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 20/55

Computation Graph: Single Neuron

The computation graph is hence given by

Here, the computation nodes are the weights and bias of the neuron

once we fix them, we can pass forward and get to the loss R

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 21/55

Computation Graph: Single Neuron

Once passed forward, we can move backward to determine the derivatives

For a particular weight w,,, we can write (we drop arguments whenever clear)

ﬁ _ dRdy 0z
ow, dy dz dwy,

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 22/55

Computation Graph: Multivariate Form

Let's get back to the following computation graph

We define vector-valued functions, and show the graph compactly: let’s define

91 ()

gn (2)
Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 23/55

Training FNN Computation Graph

Computation Graph: Multivariate Form

Function g (-) gets x as the input and returns all z,,’s in a vector z, i.e.,

gn () 2N

We now use this vectorized notation to simplify the computation graph as

@g>@f>@

The forward pass on this graph is exactly the same: we give x to the
vectorized function g (-) to get z which is then passed forward to f (-) to get y

How does the backward pass look like then?

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 24/55

Computation Graph: Multivariate Form

We could define the derivative g (-) as the vector of derivatives g (-)

. dz1
x e Ny
s (2) = SR I
A N R
gn (z) G

Let’s show this vectorized derivative and gradient of f on the backward links

Well, we can pass backward as follows

dy al oy dzp, T.
PRI REION 10

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 25/55

Training FNN Computation Graph

Computation Graph: Multivariate Form

+ What can we conclude then?

- We can sketch the computation graph very compactly using vectorized
derivatives and gradients

+ Does it mean that we should then pass backward exactly the same as in a
computation graph with scalar variables and derivatives?

- Pretty much Yes! Only one delicate detail: we should know how to
multiply those gradients and vectorized derivatives!

In our example, we determined the inner product
dy
dx

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 26/55

=V/Teg

Training FNN Computation Graph

Computation Graph: Multivariate Form

+ How do we know which type of product we should use?

- Well! If you were in doubt, we could always do it by expanding in
terms of entries; however, we are going to practice all key functions that
appear in NN computation graphs!

Before we start with all key functions, let's get back to a single neuron

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 27/55

Training FNN Computation Graph

Computation Graph: Multivariate Form

Let’s define, as we did earlier, the following vectors

Trog = 1 wo =
x1 w1

X = and w =
TN wN

Recall that output of the neuron is determined as y = f (z) for
z = XTW

So, we can show the computation graph compactly as
T f L (y,v)
X o) 5 7
@ ’\f/ - y e

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025

28/55

Computation Graph: Multivariate Form

Let’s look at each link carefully: we pass backward, so we start with last link

T L(y,v
O —00™®

* Ris a scalar function of scalar y, i.e., R = L (y,v)
L, the backward link contains the scalar derivative £
* yis a scalar function of scalar z,i.e,y = f (2)

L, the backward link contains the scalar derivative f

e 2 is a scalar function of vector w, i.e, z = x'w

L, the backward link contains the gradient Vz
So, the graph with the backward links looks like

T L (y,v
WO

Vz f L
Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 29/55

Training FNN Computation Graph

Computation Graph: Multivariate Form

T L(y,v
W oG

Vz f L
We are almost complete; only we need to calculate V =
5Z/aw0 1 =2
z=wy+wir1 +...+wyry v Vz = . = . =X

So, we are complete! Here is the vectorized computation graph of the neuron
XT m f ‘C (ya U)
v 22 T
X f r

Computation Graph: Multivariate Form

Now, how do we pass backward on this graph?

T L(y,v
W oG

X f L
We arrived at y at the end of forward pass: at this point, we can determine
drR .
— =L =L
dy (y7 U)

and we are at the computing node y. We then pass backward L. At node z, we
can compute f (z), and use what we received from y to compute

dR dLdy _if
dz dy dz

and pass it backward

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 31/55

Training FNN Computation Graph

Computation Graph: Multivariate Form

Now, how do we pass backward on this graph?

T L (y,
W oG
X f L

Arriving at w, we can determine Vz = x and use what we received from z to
compute what we want

VR wrt w= Vo k= i_fjw _ fix

+ Well! That seems easier!

- Right! Let's now try some important cases

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 32/55

Backpropagation: Local Operations

Let’s consider a general problem: an objective scalar R is a function of
K -dimensional vector y € R'<. Clearly in this case, we have a gradient

8R/6y1
vyR = :
61:2/631;(

Assume that we know this gradient. The vector y is also function of another
variable. We want to compute gradient of R with respect to this other variable

VyR

We now consider different cases for the other variable and its link to y

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 33/55

Backpropagation: Local Operation 1

Entry-wise Functional Operation

y € R¥ is a function of z € R as'y = f (z) with f () operating entry-wise

O——C—®
VyR

For this case, we note that 1 is only a function of z;; thus we have

@_ﬁ%_@'@)
Oz Oyp 0z, Oy r

So, we can use entry-wise product to get from Vyf? to sz%
V,R=V,RO f(2)

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 34/55

Training FNN Backpropagation

Backpropagation: Local Operation 1

Reminder: Entry-wise product of two vectors of the same size is

21 Y1 Y121
zOy | 1 |O| [=]
2K YK YKZK

So, we can compactly perform this local operation as follows

with the backward step

V.R=V,RO f(z)

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025

35/55

Backpropagation: Local Operation 2

Linear Vector-to-Vector Operation

y € RE is a functionof z € RN asy = Az with A e REXN

y

Here, ;. is a linear function of z1, ..., zn

N
Yp = Z A [k,n] 2z,

n=1

where A [k, n] is entry of A at row k and column n. We thus can write

OR ayk
é’zn Z 8yk (?zn Z _A L

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025

36/55

Backpropagation: Local Operation 2
Let’s denote column n of A by notation A [:, n]; so, we can write

Z OF o [k,n] = A[:,n]" VyR

azn ayk

Now, if we collect them in a vector form we get

R0z, Al1]"
V.R=| : |= ; V,R=ATV, R
R fozx A, N]T

a product that does such dimensionality change for us

This makes sense! Since we are changing dimensions fro K to N, we need

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025

37/55

Training FNN

Backpropagation: Local Operation 2

Long story short . . .
A .
AT VyR
with backward step
V.R=A"V,R

Applied Deep Learning Chapter 2: FNNs

Training FNN Backpropagation

Backpropagation: Local Operation 3

Linear Matrix-to-Vector Operation

y € R¥ is a function of A € RE*N as y = Az withx € RV

VyR

y

+ Wait a moment! The other variable is a matrix! How do we define V AR?
- Right! Let’s first extend the definition

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 39/55

Training FNN Backpropagation

Backpropagation: Local Operation 3

Assume scalar R is a function of matrix A € RE*N we define

0R/oA[1,1] ... OR/OA[1,N]
VaR = : :
ORJOA[K,1] ... ORJ0OA[K,N]

with A [k, n] being the entry of A at row k£ and column n

It is worth to also think of gradient descent in this case: assume we are
minimizing R over A using gradient descent with learning rate 1. At iteration t
we got point A®); now, in the next iteration we can readily write

AT — A® VA RA_ae

so apparently everything is as before!

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 40/55

Backpropagation: Local Operation 3

Back to our problem, we can write

O——CO—

VyR

Entry k of y is a linear function of the k-th row of A, i.e.,

N
Yp = Z xnA [k, n]
n=1

So, we can write

I K Cow K
(9A [4,n Z Oy 6A [4,n Z::

1k =jlan=—-—

S
\:w
S
=

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 41/55

Training FNN Backpropagation

Backpropagation: Local Operation 3

Let's now put them in a matrix

oR R
oy, 1 oy TN
VaR=| : : = VyRx'
oR R T
dyr 1 dyr N

So, we should now apply outer product! This again makes sense!

We have a K -dimensional gradient V, R and an N-dimensional vector
x, we need an outer product to convert it into the K x N matrix VA R

42/55

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025

Backpropagation: Local Operation 3

So, we could conclude

DO~ O,
x’ VyR
with the backward step
VaR=V,Rx'

Now, we are ready to “backpropagate” over an FNN

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 43/55

Backpropagation: Algorithm
Let's recall the compact diagram of an FNN with L hidden layers

We can easily expand it into a computation graph

®&© f1 (')@ _)C)fL (')(>WL+1< >fL+1 (')@

Our objective is the empirical risk; so let's include it also in the graph

T @D
Q@@ @G @5

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 44/55

Backpropagation: Algorithm

Given data-point x and its true label v, we once complete a forward pass

Y e
®—’: @ C Cj L+1<)fL+1 @5

At the end of forward pass,
we know the value of all variables, i.e., z, and y, for all ¢

Now, let’s assume we want to find VWL+1R

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 45/55

Backpropagation: Algorithm
We now cut the graph at the link W4

‘
(>WL+1< >fL+1 ()@5
Let's recall . ..

+ what is the variable here?
- |t’S WL+1
+ Can we modify the graph such that it becomes a node?

- Sure! We note that z;, .1 = W 1y. We can look at it as a linear
matrix-to-vector operation; so, we could modify the graph as

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 46/55

Backpropagation: Algorithm

Let's now move backward to Wy, {
@ We have y, 1, so we compute Vy, .| R, and pass it
@® We have zy,, 1, so we compute fr1(z1+1), and then we get

vZL+1R = VYL+1R © fL+1(ZL+1)
© We have y, so we compute Vv, R from the last pass as

VWL+1R = vZL+1R y-IL-

N

\% L+1
z L /y

fre (
Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 47/55

Backpropagation: Algorithm

We can propagate backward deeper and deeper
® We cut at the link that we want to compute the gradient with respect to

® We exchange the linear vector-to-vector function at that particular link to
a linear matrix-to-vector function

* We move backwards till we get to the source of this graph

Let’s see the example for Wy,

-
00 0ng

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 48/55

Backpropagation: Algorithm
We already have passed backward messages till z;, . 1: we have V R
@ WenowpassV,, . Rtoyy:Vy, R=W], V, R
@® Wethenpass Vy, Rtoz;:V,, R=V,, RO f1
L, We should remove entry of V,, R at index 0: | we don’t want 0R /0y, [0]

©® We finally pass V,, RtoW1: Vw, R=V,, Ryl _,

ZL+1

Zr+1

Ty
‘/vyL+1R
Yi—1 fL(’)() Wi (>fL+1 ()

Yi-1 fr () Wi, frei ()

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 49/55

Backpropagation: Algorithm
As we arrive backward at layer ¢, we already have messages till z,
@® WepassV,,. Rtoy:Vy,R=W] V, R
@ We then pass Vy,Rtoz;: V,, R =V, RO [,
L, We should remove entry of V,, R at index 0: | we don’t want dR/dy, [0]
© We finally pass V,, Rto W: Vw,R = V,, Ry |

@@ 0—» ------------ @
yz 1

Wi,
Once we propagate back to the input, i.e., £ = 1, then we have all gradients!

YL+1

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 50/55

Training FNN Backpropagation

Backpropagation: Few Notations

To formally present backpropagation, let us define a few notations

For¢=1,...,L+ 1, wedefine

<
~
=

I
a <
&m>

Ye
Zy

and keep in mind that
® yyand ;K are totally different things

® z,and Eg are totally different things

Applied Deep Learning Chapter 2: FNNs

© A. Bereyhi 2024 - 2025

Fil /55

Backpropagation: Pseudo Code

for(= 1,...,L+ lgo
Return Vw, R = zsy]
end for

1: Initiate with y ; ., = VL(yz11,v)and Z 41 = y 101 © fre1(z041)
2:for{=1L1,...,1do

3: Determiney, = W, 7,1 and drop y, [0] # backward affine
4: Determine z, = fe(zz) ® ‘)74 # backward activation
5: end for

6:

7:

8:

Wi, fran (-

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 52/55

Backpropagation: Pseudo Code

for(= 1,...,L+ lgo
Return Vw, R = zsy]
end for

1: Initiate with y ; ., = VL(yz11,v)and Z 41 = y 101 © fre1(z041)

2: for{=1L,...,1do

3: Determiney, = W, 7,1 and drop y, [0] # backward affine
4: Determine z, = fe(zz) ® ‘)74 # backward activation
5: end for

6:

7:

8:

+ This looks very similar to forward propagation! Right?!
- Yeah! Just we go backward! That's the whole point of backpropagation

You need to go once forth and then back to determine all gradients

Let's put them next to each other

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 53/55

Backpropagation: Pseudo Code

ForwardProp() :

1: Initiate with yg = x

2: for{=0,...,Ldo

3: Add y,[0] = 1 and determine z,+1 = Wii1ye # forward affine
4: Determine ye+1 = fe+1(Ze11) # forward activation
5: end for

6:for{=1,...,L+1do

7: Return y, and z,

8: end for

BackProp():

1: Initiate with §L+1 = VC(yL+1, v) and EL+1 = §L+1 @ fL+1(ZL+1)

2: forc=1L,...,1do

3: Determine y, = W/, 71 and drop y , [0] # backward affine
4: Determine z ¢ = fg(ze) ® §e # backward activation
5: end for

6: for{=1,...,L + 1do

7: Return Vw,R = 70y, ,

8: end for

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 54/55

Complete Training Loop via Gradient Descent

+ Say we use backpropagation; then, how does gradient descent look?
- Well! We should go back and forth with all data-points
Say we have dataset

|D={(wb,vb) fOI"b=1,...,B}

GradientDescent () :

1: Initiate with some initial values {WE,O)} and set a learning rate n

2: while weights not converged do

3: forb=1,...,Bdo

4 NN.values < ForwardProp (x, {Wét)}) # forward
5 {sz(t)}-?b} «— BackProp (x, vs, {Wgt)}, NN.values) # backward
6 end for

7: for{=1,...,L+1do

8: W, w, O n mean(VW[(t)I:Zl, R va(*')RB)

9: end for 4)

10: end while

Applied Deep Learning Chapter 2: FNNs © A. Bereyhi 2024 - 2025 55/55

	Training FNN
	Computation Graph
	Backpropagation

