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Gradient Descent Algorithm

Function Optimization
The model training always reduces to an optimization problem

w‹ “ argmin
w

R̂ pwq “ argmin
w

1

I

I
ÿ

i“1

L pfh pxi|wq , yiq (Training)
Let’s recall each component of this optimization problem

‚ fh p¨|wq model with hyperparameters h and learnable parametersw
ë in DL, it is the input-output relation of a neural network whose architecture

is specified by h and whose weights and biases are collected inw
‚ xi is a data-point with label yi, and I is size of dataset
‚ L is the loss function

No matter what we choose, at the end of the day we need to solve

min
w

R̂ pwq
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Gradient Descent Algorithm

Function Optimization
In general, the empirical risk R̂ pwq can have local and global minima

Let’s take a look at a simple visual case with only one parameter, i.e., w P R

w

R̂ pwq

‚
global

‚
local

We are happy if we get the global; but, many times getting to a local is enough!
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Gradient Descent Algorithm

Function Optimization
+ Why is it a big problem? We could grid w and search for the grid with

smallest empirical risk. We then find it with a good accuracy!
– For only one parameter yes! But, we have seen deep neural networks.They have too many neurons, and hence too many parameters!

Say for an accurate approximation with only one parameter, we needG grids

If we haveD parameters, i.e.,w P RD , we need
GD grids

to get an approximation with the same accuracy!
For practical neural networks withD “ 105, this is impossible!

we need to have an optimization algorithm with feasible complexity
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Gradient Descent Algorithm

Optimization Algorithms ” Optimizer
We look for an optimization algorithm, or as ML people call it “an optimizer”

‚ it starts from an initial point and moves for some steps
‚ in each step, it moves towards where the empirical risk is minimized
‚ it moves for a feasible number of steps

w

f pwq

‹

‚

‚

‚
‚‚
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Gradient Descent Algorithm

Optimization Algorithms ” Optimizer
Let’s clear things up: we are looking for an iterative approach as below

1: Initiate at somewp0q
P R

D and deviation∆ “ `82: Choose some small ϵ3: while∆ ą ϵ do4: Determine a vector µptq
P R

D based on R̂ pwq Ð we need to figure out
5: Update weights aswptq

Ð wpt´1q
` µptq

6: Update the deviation∆ “ |R̂pwptq
q ´ R̂pwpt´1q

q|7: end while

We would like to have following properties
ë most of the time the empirical risk reduces in line 5
ë the algorithm stops after a feasible number of iterations
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Gradient Descent Algorithm

Optimization Algorithms
1: Initiate at somewp0q

P R
D and deviation∆ “ `82: Choose some small ϵ, and set t “ 13: while∆ ą ϵ do4: Determine a vector µptq

P R
D based on R̂ pwq Ð we need to figure out

5: Update weights aswptq
Ð wpt´1q

` µptq

6: Update the deviation∆ “ |R̂pwptq
q ´ R̂pwpt´1q

q|7: end while

We are going to get what we want, if we set
µptq to be proportional to the negative of gradient atwpt´1q

This is what we call the gradient descent algorithm. But, before we start with
this algorithm, let’s recap some basic notions of calculus!
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Gradient Descent Algorithm Review: Derivative and Gradient

Review: Derivative of a Function
Derivative of one-dimensional function f pwq at point w “ w0 is defined as

9f pw0q “
d

dw
f pw0q “ f 1 pw0q “ lim

δÑ0

f pw0 ` δq ´ f pw0q

δ

This definition is intuitively interpreted as follows:
Let y “ f pwq. If we vary w around w0 with a tiny step dw; then,

Variation of y “ dy “ 9f pw0qdw

w

f pwq

w0

dw

dy

‚

‚

slope = 9f pw0q
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Gradient Descent Algorithm Review: Derivative and Gradient

Review: Derivative of a Function

w

f pwq

w0

dw

dy

w

f pwq

w0

dw

dy

The derivative represents the slope of function
‚ 9f pw0q ą 0 means increasing w will increase y “ f pwq

‚ 9f pw0q ă 0 means increasing w will decrease y “ f pwq

So, we could also say: the derivative shows the moving direction on w-axis
towards which the function increases; or alternatively, its negative is the
direction that function decreases
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Gradient Descent Algorithm Review: Derivative and Gradient

Review: Derivative of a Function
When do we have the derivative equal to zero? Either we are at a maximum

w

f pwq

wmax

‚

Starting before the maximum,
‚ The derivative is first positive and gradually reduces to zero
‚ As we pass the maximum the derivative gets more and more negative

So around the maximum as we increase w, the derivative reduces

:f pwmaxq “
d2

dw2
f pwmaxq “ f2 pwmaxq ă 0
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Gradient Descent Algorithm Review: Derivative and Gradient

Review: Derivative of a Function
When do we have the derivative equal to zero? Either we are at a minimum

w

f pwq

wmin

‚

Starting before the minimum,
‚ The derivative is first negative and gradually increases to zero
‚ As we pass the minimum the derivative gets more and more positive

So around the maximum as we increase w, the derivative reduces

:f pwminq “
d2

dw2
f pwminq “ f2 pwminq ą 0
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Gradient Descent Algorithm Review: Derivative and Gradient

Review: Derivative of a Function
When do we have the derivative equal to zero? Either we are at an inflection

w

f pwq

winf

‚

Starting before the inflection point,
‚ The derivative is first positive and gradually decreases to zero
‚ As we pass the inflection point the derivative gets again positive

So around the inflection point, the second derivative changes sign

:f pwinfq “
d2

dw2
f pwinfq “ f2 pwinfq “ 0
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Gradient Descent Algorithm Review: Derivative and Gradient

Review: Gradient of a Function
+ What about multi-variable functions, e.g., f pwq forw “ rw1, . . . , wN s?– We can take derivative with respect to each variable, i.e.,

9fn pw0q “
B

Bwn
f pw0q

This is what we call partial derivative
Partial derivative n represents the same thing: slope in direction of wn

Let y “ f pwq. If we varyw aroundw0 in N -dimensional space with
dw “ rdw1, . . . ,dwN s

whose entries are very tiny; then, the variation of y is
dy “ 9f1 pw0qdw1 ` . . . ` 9fN pw0q dwN “

N
ÿ

n“1

9fn pw0q dwn
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Gradient Descent Algorithm Review: Derivative and Gradient

Review: Gradient of a Function
We can use inner-product to represent dy compactly

dy “

N
ÿ

n“1

9fn pw0q dwn “
“

9f1 pw0q . . . 9fN pw0q
‰

loooooooooooooomoooooooooooooon

∇fpw0q
T

»

—

–

dw1...
dwN

fi

ffi

fl

“ ∇f pw0q
Tdw

We call∇f pw0q the gradient of f p¨q atw “ w0
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Gradient Descent Algorithm Review: Derivative and Gradient

Review: Gradient of a Function

w0,1
w0,2

y0

dw

dy

∇fpw0q

w1
w2

f
pw

q

Applied Deep Learning Chapter 1: Preliminaries © A. Bereyhi 2024 - 2025 15 / 43



Gradient Descent Algorithm Review: Derivative and Gradient

Review: Gradient of a Function
Let’s get to thew-plane: the gradient is perpendicular to the contour level

w1

w2

dw

∇fpw0q

w0

θ
‚

The variation of y is the inner product of these two vectors
dy “ ∇f pw0q

Tdw “ ∥∇f pw0q∥∥dw∥ cos pθq

where ∥¨∥ is the Euclidean norm, i.e., ∥w∥ “
a

w2
1 ` w2

2
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Gradient Descent Algorithm Review: Derivative and Gradient

Review: Gradient of a Function
Say we move with a tiny step of fixed size: so we have

∥dw∥ “ ϵ

for some small ϵ

+ How can we move, such that y maximally increases?
– Well, we need θ “ 0 meaning that

we should move in the direction of gradient

Alternatively, the function decreases maximally if θ “ π or
we move in the direction of negative gradient
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Gradient Descent Algorithm Review: Derivative and Gradient

Review: Gradient of a Function
When do we have zero gradient? Either when we are at a maximum

We can again relate it to the second order derivatives of the function
at maximum Hessian matrix is negative definite
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Gradient Descent Algorithm Review: Derivative and Gradient

Review: Gradient of a Function
When do we have zero gradient? or when we are at a minimum

We can again relate it to the second order derivatives of the function
at minimum Hessian matrix is positive definite
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Gradient Descent Algorithm Review: Derivative and Gradient

Review: Gradient of a Function
When do we have zero gradient? or when we are at a saddle point

We can again relate it to the second order derivatives of the function
at saddle point Hessian matrix is neither negative nor positive definite
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Gradient Descent Algorithm Review: Derivative and Gradient

Review: Gradient of a Function
Just as a reminder: Hessian is the matrix of all second order derivatives

∇2f pw0q “

»

—

—

–

B2

Bw2
1
f pw0q B2

Bw1Bw2
f pw0q . . . B2

Bw1BwN
f pw0q

... ...
B2

BwNBw1
f pw0q B2

BwNBw2
f pw0q . . . B2

Bw2
N
f pw0q

fi

ffi

ffi

fl

Wenever use the Hessianmatrix in this course
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Gradient Descent Algorithm GD Algorithm

Moral of Story: Gradient Decent
+ What is the whole motive of this discussions?
– Simple: at any pointw0, if we want to move in a direction that the

function reduces, the best direction is negative of gradient atw0

So, we can complete our optimization algorithm as follows:

1: Initiate at somewp0q
P R

D and deviation∆ “ `82: Choose some small ϵ and η, and set t “ 13: while∆ ą ϵ do4: Update weights aswptq
Ð wpt´1q

´η∇R̂pwpt´1q
q5: Update the deviation∆ “ |R̂pwptq

q ´ R̂pwpt´1q
q|6: end while

The scalar η is the step-size we take in each iteration:
we usually call it learning rate
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Gradient Descent Algorithm GD Algorithm

Behavior of Gradient Decent
+ Can we always use gradient descent?
– Pretty much Yes! The problem starts only when the empirical loss is not

differentiable

How to handle this problem?

There are two sources for being non-differentiable
1 a function that is continuous but not differentiable
2 a discontinuous function

Let’s look at each case separately

Applied Deep Learning Chapter 1: Preliminaries © A. Bereyhi 2024 - 2025 23 / 43



Gradient Descent Algorithm GD Algorithm

Behavior of Gradient Decent: Non-differentiable Elements
An example of a non-differentiable continuous function is ReLU

x

ReLU pxq

ù
x

9ReLU pxq

‚‚
‚
‚
‚
‚
‚̋

˝

.
In this case, we define a sub-gradient and use it instead of gradient

take the slope of a line that lies below the curve at the point
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Gradient Descent Algorithm GD Algorithm

Behavior of Gradient Decent: Discontinuous Elements
An example of a discontinuous function is the step function

x

s pxq

‚

˝ ù
x

9s pxq

`8

˝

The gradient is somehow infinite! We can only rely on the sign of variation

we always avoid such elements in our model and loss

Bingo! You may recall that we discouraged the choice of activation and loss
function in the perceptron machine
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Gradient Descent Algorithm Convergence

Behavior of Gradient Decent: At Stationary Points
+ Now, let’s assume that we’ve handled differentiability. Does gradient

decent always end up at the minimum point?
– This brings up the concept of convergence

Let’s look at the algorithm again

1: Initiate at somewp0q
P R

D and deviation∆ “ `82: Choose some small ϵ and η, and set t “ 13: while∆ ą ϵ do4: Update weights aswptq
Ð wpt´1q

´η∇R̂pwpt´1q
q5: Update the deviation∆ “ |R̂pwptq

q ´ R̂pwpt´1q
q|6: end while

Intuitively, if we set ϵ very small: the algorithm stops when the gradient is close
to zero, i.e., when we are at a maximum, minimum or an inflection/saddle-point

Let’s see how the algorithm behaves when we get close to such point
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Gradient Descent Algorithm Convergence

Behavior of Gradient Decent: At Stationary Points
When we are around a maximum

w

f pwq ‹ ‚

‚

‚

‚

If we are exactly at a maximum; then, the algorithm stops. But, in reality
we land somewhere around it

at such points, the algorithm always pushes us outwards

Gradient descent practically does not get into a maximum
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Gradient Descent Algorithm Convergence

Behavior of Gradient Decent: At Stationary Points
When we are around a minimum

w

f pwq

‹
‚

‚

‚

‚

Around minima, the algorithm always pushes us towards the minimum
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Gradient Descent Algorithm Convergence

Behavior of Gradient Decent: At Stationary Points
When we are around an inflection point

w

f pwq

‹

‚

‚

‚

‚

If we are exactly at an inflection; then, the algorithm stops. But, in reality
we land somewhere around it

at such points, the algorithm always pushes us somewhere else

Gradient descent practically does not get into an inflection
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Gradient Descent Algorithm Convergence

Behavior of Gradient Decent: At Stationary Points
+ Can we extend this conclusion to saddle-points?
– Yes, but with a bit of caution!

At saddle points, function is maximized in a direction and minimized in another
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Gradient Descent Algorithm Convergence

Behavior of Gradient Decent: At Stationary Points
So, for a saddle-point we can conclude: if we are exactly at a saddle-point;then, the algorithm stops. But, in reality

we land somewhere around it

If at that point, the gradient has a component in the direction that thefunction is maximized; then, the algorithm pushes us outwards.
+ Can it happen that we do not land at such point?
– Thinking with an engineer’s mind: Not really!

So we could say
Gradient descent almost never gets trapped at a saddle-point
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Gradient Descent Algorithm Convergence

Behavior of Gradient Decent: Convergence
Moral of Story
Gradient descent almost never gets trapped at a point that is not minimum

+ Nice! But, does it always converge?
– Well! If we choose the learning rate properly; then, Yes!

With small learning rates, the algorithm converges; how small? η ă η‹

w

f pwq

‹

‚

‚

‚
‚‚

w

f pwq

‹

η‹

‚
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Gradient Descent Algorithm Convergence

Behavior of Gradient Decent: Convergence
Moral of Story
Gradient descent almost never gets trapped at a point that is not minimum

+ Nice! But, does it always converge?
– Well! If we choose the learning rate properly; then, Yes!

With larger learning rates, the algorithm starts oscillating: η‹ ă η ă ηth

w

f pwq

‹

‚

‚

‚
‚‚ ‚

w

f pwq

‹

ηth
‚
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Gradient Descent Algorithm Convergence

Behavior of Gradient Decent: Convergence
Moral of Story
Gradient descent almost never gets trapped at a point that is not minimum

+ Nice! But, does it always converge?
– Well! If we choose the learning rate properly; then, Yes!

With extremely large learning rates, the algorithm diverges: η ą ηth

w

f pwq

‹

‚

‚

w

f pwq

‹

ηth
‚
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Gradient Descent Algorithm Convergence

Behavior of Gradient Decent: Convergence
We can extend this idea to the multi-dimensional functions; however,

η‹ and ηth are different on each axis

w1

w2

‚

η‹
1

‚

η‹
2

w1

w2

‚

ηth
1

‚

ηth
2
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Gradient Descent Algorithm Convergence

Behavior of Gradient Decent: Convergence
One may suggest that we use a vector of learning rates, i.e.,

wptq
n Ð wpt´1q

n ´ηn
B

Bwn
R̂pwpt´1qq

for each n “ 1, . . . , N . This is however not easy; the easier way is to focus on
η‹ “ min

n
η‹
n and ηth “ min

n
ηthn
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Gradient Descent Algorithm Convergence

Behavior of Gradient Decent: Convergence
Clearly, there is always a trade-off

‚ We can choose a large learning rate
+ Gradient descent converges faster: high convergence speed– The chance of divergence however increases: high divergence rate

‚ We can choose a small learning rate
– Gradient descent converges slowly: low convergence speed+ The chance of divergence is now very low: low divergence rate

+ Well, say we are patient! Then, choosing a small learning rate is safe!
Right?!

– Well! If the empirical risk is convex; then, Yes! But, with non-convexrisks not always!
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Gradient Descent Algorithm Convergence

Recap: Convex Function
You really don’t need to know the definition of a convex function for this course;
however, just in case you’re interested, here it goes:

f p¨q : RN ÞÑ R is convex, if for any two points x1,x2 P RN , we have

fpλx1 ` p1 ´ λqx2q ď λfpx1q ` p1 ´ λq fpx2q

for all 0 ď λ ď 1

w

f pwq
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Gradient Descent Algorithm Convergence

Behavior of Gradient Decent: Convergence
In convex functions, we don’t have disjoint local minima

w

f pwq

‹

So, if we choose a small learning rate
we surely converge to the global minimum
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Gradient Descent Algorithm Convergence

Behavior of Gradient Decent: Convergence
But, most empirical losses in deep learning are non-convex:

we have multiple disjoint local minima

Gradient descent converges to one of them, but not necessarily the global one

w

f pwq

‹

‹

‚
‚

‚

Too small learning rate can leave us in a bad local minimum!
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Gradient Descent Algorithm Convergence

Behavior of Gradient Decent: Convergence
But, most empirical losses in deep learning are non-convex:

we have multiple disjoint local minima

Gradient descent converges to one of them, but not necessarily the global one

w

f pwq

‹

‹

‚
‚

‚

Initial larger learning rates can take us out of bad local minima!
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Gradient Descent Algorithm Convergence

Behavior of Gradient Decent: Convergence
We can hence conclude a more general trade-off

‚ We can choose a large learning rate
+ Gradient descent converges faster: high convergence speed+ Gradient descent may fall out of a local minimum: lower risk– The chance of divergence however increases: high divergence rate

‚ We can choose a small learning rate
– Gradient descent converges slowly: low convergence speed– Gradient descent traps in a local minimum: high risk+ The chance of divergence is now very low: low divergence rate

+ How do we do it in practice?
– In practice, we start with large learning rates and reduce it gradually aswe get close to the minimum

We will talk about this more once we start training practical neural networks!
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Gradient Descent Algorithm Convergence

Gradient Decent: Summary
1: Initiate at somewp0q

P R
D and deviation∆ “ `82: Choose some small ϵ and η, and set t “ 13: while∆ ą ϵ do4: Update weights aswptq

Ð wpt´1q
´η∇R̂pwpt´1q

q5: Update the deviation∆ “ |R̂pwptq
q ´ R̂pwpt´1q

q|6: end while

Gradient descent converges almost always to a local minimum
‚ With convex empirical risks, this is global minimum
‚ With non-convex empirical risks, this is not necessarily global minimum
‚ Learning rate is a crucial parameter that tunes the convergence

There are other optimization algorithms that work based on gradient: we will
talk about them later!
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