Applied Deep Learning

Chapter 8: Representation and Generation
Ali Bereyhi
ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Applied Deep Learning Chapter 8: Representation & Generation

mailto:ali.bereyhi@utoronto.ca

Auto Encoder: Deep PCA with Encoder-Decoder

AE is in principle a deep encoder-decoder architecture used for nonlinear PCA

A3 £

Encoder Bottleneck Decoder

Vanilla AE finds a latent space that is very smaller in dimension
e Fach data-point is encoded to its low-dimensional latent representation
L, Latent representation contains in fact the

e [atent representation can re-generate the data-point via using decoder

Applied Deep Learning Chapter 8: Representation & Generation © A. Bereyhi 2024 - 2025 2/19

Auto Encoder

Vanilla AE

Auto Encoder (AE)

AE is an encoder-decoder architecture whose , also called
latent representation, has lower dimension than the input and output of NN

We can implement encoder and decoder by simple NN, e.g.,

E3 E3

Such an architecture is a vanilla AE mainly used for compression

+ Is compression so crucial that AEs become so important?

- Naive answer: Yes! Better answer: AEs can do much more than
compression in fact!

Applied Deep Learning Chapter 8: Representation & Generation © A. Bereyhi 2024 - 2025 3/19

Training AEs: General Approach

We typically use AEs in unsupervised settings: it means that we have no
labels in the dataset

¢ |n AE both latent representation and decoded data are outputs
® for training we need to compute loss between the outputs and a reference
L, We cannot compare the latent representation with any reference
L, We have no true latent representation
e We should some reference from our dataset

L, This reference depends on our target application
L, We are going to consider three types in this chapter

To go on with the training of AEs, let’s keep the track of their applications
@ Compression

L, We intend to compress data into a lower-dimensional subspace
L, For loss computation, we compare decoded data with its ground truth

Applied Deep Learning Chapter 8: Representation & Generation © A. Bereyhi 2024 - 2025 4/19

Auto Encoder Compression via AEs

Training AEs for Compression

X Z X
E3s E3

Let's name variables: say the input is X, e.g., RGB image, latent representation
is Z, e.g., multi-channel tensor, and X is decoded output, e.g., RGB image

® for compression we wish to recover X =X
L, Loss is proportional to the difference between X and X
e We are indifferent about the behavior of latent representation

L, We do not need to include Z directly in lgss computation
L, Z contributes to loss indirectly through X

So, the loss in this case is compute as

R=L(X,X)

Applied Deep Learning Chapter 8: Representation & Generation © A. Bereyhi 2024 - 2025 5/19

Auto Encoder Compression via AEs

Training AEs for Compression

X Y/ X
£3 E3

We know the loss: we can analytically compute VXR, so training is done by
standard forward and backward pass
@ Pass X forward through the encoder
L, Compute output of all layer as well as Z
@® Pass Z forward through the decoder
L, Compute output of all layer as well as X

® Compute VXR and backpropagate through decoder

O Compute VR from the gradient at the first layer of decoder
© Starting from VzR backpropagate through encoder

® Update all weights and go for the next round

Applied Deep Learning Chapter 8: Representation & Generation © A. Bereyhi 2024 - 2025 6/19

Auto Encoder Compression via AEs

Example: Compressing MNIST

¢

A simple practice can be done on MNIST: we try to represent MNIST images
in a 2-dimensional latent space. For encoding we use the following MLP

@ It has four hidden layer

L, The widths of layers gradually reduce
L, The last layer has only two outputs

® All neurons are activated via sigmoid

® We do not use any dropout or batch-normalization

Applied Deep Learning Chapter 8: Representation & Generation © A. Bereyhi 2024 - 2025 7/19

Auto Encoder Compression via AEs

Example: Compressing MNIST

¢

For decoding we use another MLP to invert the encoder
@ The decoder has four hidden layer

L, The widths of layers gradually increase
L, The last layer has 784 neurons

@ All neurons are activated via sigmoid
® We finally sort the output into a 28 x 28 matrix

Applied Deep Learning Chapter 8: Representation & Generation © A. Bereyhi 2024 - 2025 8/19

Auto Encoder Compression via AEs

Example: Compressing MNIST

¢

Training then follows the standard approach: this is in fact an 8-layer MLP
@ Pass each training image forward through all layers
® Compute loss between the output and true image, e.g.,

L (Xx) — |X - X|?

® Compute VXR and backpropagate
@ Update all weights and go for the next round

Applied Deep Learning Chapter 8: Representation & Generation © A. Bereyhi 2024 - 2025 9/19

Auto Encoder Compression via AEs

Example: Compressing MNIST

We can then test our AE
@ Pass a test image forward through encoder
@® Compute latent representation
® Fass the latent representation forward through decoder
@ Compare the images

0o 0

Applied Deep Learning Chapter 8: Representation & Generation © A. Bereyhi 2024 - 2025 10/19

Obvious Compression via Vanilla AE

For compression it is important that we set
the latent representation to be of smaller dimension than input

If we set it larger or equal to the input size, we end up with an obvious solution
Decoder (Encoder (+)) = ldertity (-)

e We want to recover the original data after decoding
L, Identity is always an obvious solution

e With larger latent space we can always realize identity
L, Wesimply set Z = X and X =17

® This is however useless since we do not compress

Applied Deep Learning Chapter 8: Representation & Generation © A. Bereyhi 2024 - 2025 11/19

Sparse AEs

Let’s keep the track of their applications

@ Compression

® Finding a sparse representation of data
L, We intend to represent data with a sparse object

L, for instance, we intend to represent input x € R'°° with another
100-dimensional vector whosemost of entries are zero
L, we may want to further compress, i.e., represent x € R*°° with an
80-dimensional sparse vector
L, For loss computation, we should also take a look at the latent representation

L, we want the latent representation to be sparse
L, in vanilla AE there is no guarantee that this happens

For such application we use sparse AEs

Applied Deep Learning Chapter 8: Representation & Generation © A. Bereyhi 2024 - 2025 12/19

Auto Encoder Sparse Representation via AEs
Training AEs for Sparse Representation

Z «~~ sparse

,Lr

Let’s formulate the problem: say the input is X, latent representation is Z, and
X is decoded output
e We still need to recover from latent representation, i.e., we want X =X
L, Loss is proportional to the difference between X and X
e We also want to have sparse latent representation

L, Z should contribute directly to loss
L, Loss should also be proportional to the sparsity of Z

Applied Deep Learning Chapter 8: Representation & Generation © A. Bereyhi 2024 - 2025 13/19

Training Sparse AEs

Loss is proportional to difference between X and X, and sparsity of Z

So, the loss in this case should be

R=L(X,X)+5(Z)

for some function S () that is proportional to sparsity, i.e.,
if Z has less zeros «~~ S (Z) should increase

and regularizer) that is a

S (Z) = ||Z]|p v~ non-differentiable X
S(Z) = ||Z]|; v~ convex v
S (Z) = KL (pz|Ber,) v~ convex v

L Ber,, is a Bernoulli distribution with probability of zero being p
L, pz is the empirical distribution of the support of Z

Applied Deep Learning Chapter 8: Representation & Generation © A. Bereyhi 2024 - 2025

14/19

Auto Encoder Sparse Representation via AEs

Training Sparse AEs

X Z X
E3s E3

Let's see how training looks: say we are training with single sample X
e Pass forward X through encoder and decoder
® Backpropagate by first computing VXR
L, Backpropagate till the bottleneck .
L, At the bottleneck, we need to compute Vz R

VzR = ViRoVzX +)\V3zS(Z)
—_———
computed Ry Backpropaaation

L, Start from V7R and backpropagate till input
e Update weights and go for the next round

Applied Deep Learning Chapter 8: Representation & Generation © A. Bereyhi 2024 - 2025

15/19

Using AE for Noise Removal

Let’s keep the track of their applications
@ Compression

® Finding a sparse representation of data
® Denoising
L, We intend to find a representation that can refine noisy data

L, forinstance we want to remove background noise from an image
L, for instance we want to increase the resolution of an image
L, for instance we want to color a gray image

L, For loss computation, we should

L, be able the recover the refined data at the decoder
L, unlike vanilla AE we can start with distorted data

We call such AE architectures denoising AEs

Applied Deep Learning Chapter 8: Representation & Generation © A. Bereyhi 2024 - 2025

16/19

Auto Encoder Denoising via AEs

Training Denoising AEs

83 £3

We can train a denoising AE using degraded samples
® For each training sample we generate its degraded counterpart, e.g.,
L, for each image we also produce a noisy, or low-resolution or gray version
e We give this noisy version to the encoder
e We set loss to compute difference between original samples and output
L, the decoded image and the original RGB image in dataset

Applied Deep Learning Chapter 8: Representation & Generation © A. Bereyhi 2024 - 2025

17/19

Auto Encoder Denoising via AEs

Training Denoising AEs

) z x
f:'}_t 4 —_—> g -—»-Ia—ter\—t % "‘Z;;» P—_
o8- I l E3

Let’s formulate the problem: say the sample is X, and its corrupted version is
. Also, denote latent representation by Z and decoded output by X

¢ We want to recover original data from latent representation, i.e., X =X
L, Loss is proportional to the difference between X and X

* We may want our representation to be sparse
L, We could add a penalty proportional to sparsity of Z

So, we set the loss to

R=L(X,X)+\S(Z)

Applied Deep Learning Chapter 8: Representation & Generation © A. Bereyhi 2024 - 2025 18/19

Training AEs: Summary

We could have various form of AEs depending on the target application

e Vanilla AEs
L, Encoder-decoder with both input and label being data
L, Loss computes difference between input and output = recovery error
L, We can use it for compression
® Sparse AEs
L, Encoder-decoder with both input and label being data
L, Loss computes recovery error plus a sparsity penalty
L, We can use it for sparse representation of data
® Denoising AEs
L, Encoder-decoder with input being noisy data and label being data
Ls Loss computes recovery error
L, We can also regularize with a sparsity penalty if we need sparse latent
L, We can use it for noise removal, resolution increasing and other similar
applications

Applied Deep Learning Chapter 8: Representation & Generation © A. Bereyhi 2024 - 2025 19/19

	Auto Encoder
	Training AEs
	Compression via AEs
	Sparse Representation via AEs
	Denoising via AEs

