

Applied Deep Learning

Chapter 8: Representation and Generation

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Fall 2025

Road-map: Auto Encoders

In this chapter, we get to know **Auto Encoders** which are very powerful architectures for **feature extraction** and **data generation**: *this chapter is just an introduction, and we will see more details in the Generative AI course*

- There's going to be an ECE course on **Generative AI**
 - ↳ We start from this point there!

*The best way to understand Auto Encoders is to look at a **simple representation problem**, but before that let's make an agreement*

Auto Encoders \equiv **Autoencoders** \equiv **AEs**

from now on!

Simple Problem: Representation in Smaller Dimension

Consider a simple problem: we have a dataset of **two-dimensional** data-points

$$\mathbb{D} = \{\mathbf{x}_b : b = 1, \dots, B\}$$

where $\mathbf{x}_b \in \mathbb{R}^2$, and we want to find two weight vectors

- A weight vector $\mathbf{w} \in \mathbb{R}^2$ that **compresses** \mathbf{x}_b into a **single number** z_b as

$$z_b = \mathbf{w}^\top \mathbf{x}_b$$

- A weight vector $\hat{\mathbf{w}}$ that **decompresses** \mathbf{x}_b from z_b

$$\hat{\mathbf{x}}_b = \hat{\mathbf{w}} z_b$$

+ Can we do this?

- Well! Not always!

Simple Problem: Representation in Smaller Dimension

Let's try our ML knowledge: say we set the the **compression** vector to \mathbf{w} ; then, the **compressed version** of the dataset is

$$\begin{aligned} [\mathbf{z}_1 \ \dots \ \mathbf{z}_B] &= [\mathbf{w}^T \mathbf{x}_1 \ \dots \ \mathbf{w}^T \mathbf{x}_B] \\ &= \mathbf{w}^T \underbrace{[\mathbf{x}_1 \ \dots \ \mathbf{x}_B]}_{\mathbf{X} \in \mathbb{R}^{2 \times B}} = \mathbf{w}^T \mathbf{X} \end{aligned}$$

Now, let's find the **decompressed** versions using $\hat{\mathbf{w}}$

$$\begin{aligned} \underbrace{[\hat{\mathbf{x}}_1 \ \dots \ \hat{\mathbf{x}}_B]}_{\hat{\mathbf{X}} \in \mathbb{R}^{2 \times B}} &= [\hat{\mathbf{w}} \mathbf{z}_1 \ \dots \ \hat{\mathbf{w}} \mathbf{z}_B] \\ &= \hat{\mathbf{w}} [\mathbf{z}_1 \ \dots \ \mathbf{z}_B] = \hat{\mathbf{w}} \mathbf{w}^T \mathbf{X} \end{aligned}$$

After decompression, we get $\hat{\mathbf{X}} = \hat{\mathbf{w}} \mathbf{w}^T \mathbf{X}$ which we want to be the same as \mathbf{X}

Simple Problem: Representation in Smaller Dimension

Let's try our ML knowledge: we could define a loss and minimize it via SGD

$$\hat{R} = \mathcal{L}(\hat{\mathbf{X}}, \mathbf{X}) = \|\hat{\mathbf{w}}\mathbf{w}^T \mathbf{X} - \mathbf{X}\|^2$$

But, we actually do not need to go that far! We decompress $\hat{\mathbf{X}}$ simply if

$$\hat{\mathbf{w}}\mathbf{w}^T \stackrel{!}{=} \mathbf{X}$$

Or alternatively if we have $\hat{\mathbf{w}}\mathbf{w}^T$ to be an identity transform

$$\hat{\mathbf{w}}\mathbf{w}^T \stackrel{!}{=} \mathbf{I}$$

- + But it's **impossible**!
- Yes! $\hat{\mathbf{w}}\mathbf{w}^T$ can never be \mathbf{I} since $\hat{\mathbf{w}}\mathbf{w}^T$ is rank one and \mathbf{I} is full-rank!

Simple Problem: Representation in Smaller Dimension

Now, let's assume that we are given the following piece of information: we know that every single point in the dataset is of the form

$$\mathbf{x}_b = \begin{bmatrix} 2\alpha_b \\ \alpha_b \end{bmatrix}$$

for some real-valued α_b

it turns out we can now do compression and decompression successfully

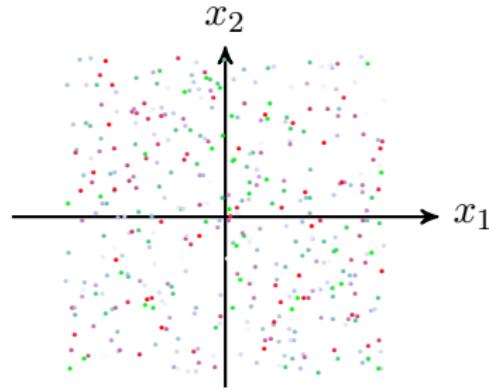
Solution: we compress by $\mathbf{w} = [1, -1]^T$ and decompress by $\hat{\mathbf{w}} = [2, 1]^T$. We can then write

$$\mathbf{z}_b = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 2\alpha_b \\ \alpha_b \end{bmatrix} = \alpha_b \rightsquigarrow \hat{\mathbf{x}}_b = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \mathbf{z}_b = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \alpha_b = \mathbf{x}_b$$

Simple Problem: Principal Component

- + Wait a moment! Why did it happen? We don't have $\hat{w}w^T = I$!
- Yes! It happened because we don't need $\hat{w}w^T = I$ in this case

A general dataset of 2-dimensional vectors look like



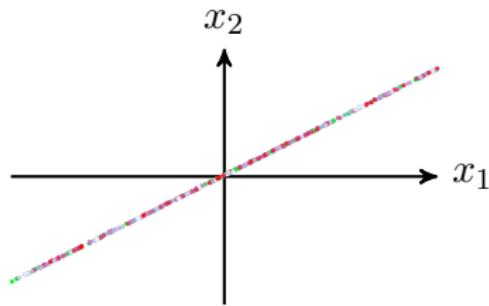
and this dataset cannot be projected on a single axis!

Simple Problem: Principal Component

We were **successful** when we knew that every data-point is of the form

$$\mathbf{x}_b = \begin{bmatrix} 2\alpha_b \\ \alpha_b \end{bmatrix}$$

In this case, the dataset is already on a single **rotated axis**



We just need to find the value of each point on **that axis**, i.e., α_b

Principal Component Analysis: Dimensionality Reduction

This is in fact *a very basic example of*

Principal Component Analysis \equiv PCA

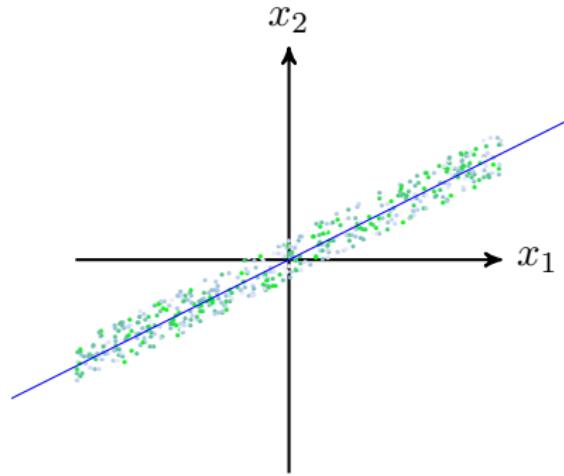
PCA: Minimum Error Formulation

In PCA, we have a dataset of N -dimensional data-points and learn a weight matrix $\mathbf{W} \in \mathbb{R}^{L \times N}$ that for each \mathbf{x}_b in the dataset generates a latent variable $\mathbf{z}_b = \mathbf{W}\mathbf{x}_b$ such that by linear reconstruction of \mathbf{x}_b from \mathbf{z}_b has minimum error

- + Do we always have such property in our dataset?!
- Perfectly no, but approximately yes!

Principal Component Analysis: Dimensionality Reduction

We could in practice have **compressible dataset** with its **main variation** being on a **reduced dimension**, e.g., 2-dimensional points that lie around a single line

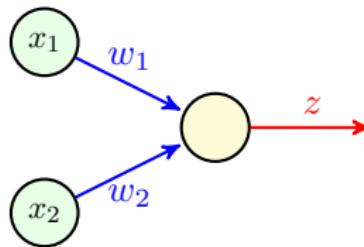


We could have a **low-dimensional latent variable** for each **data-point**

↳ We accept a minor **reconstruction error**

PCA as Neural Network

Since we like NNs, let's represent our simple example as an NN architecture and look at its training

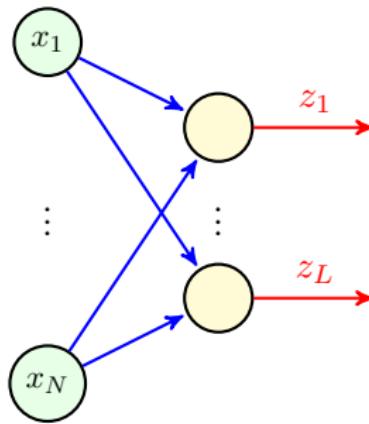


The above NN describes PCA

- We have two learnable parameters w_1 and w_2
- We want to train this NN such that z is the best representation
 - ↳ z is a compression for x

PCA as Neural Network

In more general setting, we have N inputs and L latent variables

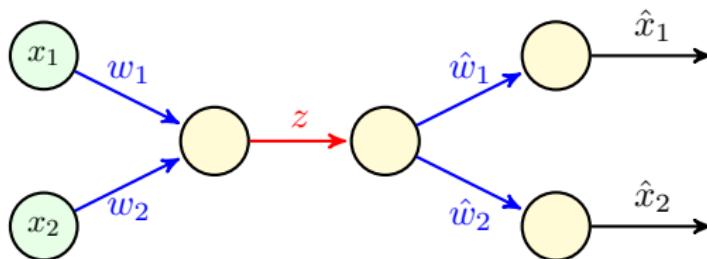


The above NN describes more generic PCA setting

- We have $(N + 1)L$ learnable parameters: NL weights and L biases
- We want to train this NN such that \mathbf{z} is the best representation
 - ↳ \mathbf{z} is low dimensional representation of \mathbf{x}

PCA as Neural Network

- + But how can we train this NN? We do not have any label!
- This is because it's an *unsupervised* learning problem

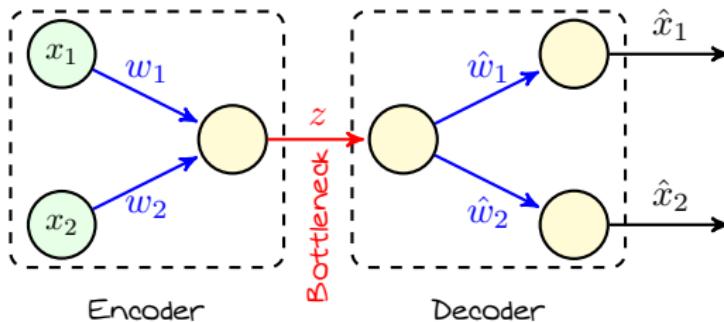


To train this model, we should *make some labels*

- We intend to *recover* \mathbf{x} from z at the end of the day
 - ↳ We can learn further the *decompression*
- We now have *some labels*
 - ↳ We train using the *loss* $\hat{R} = \mathcal{L}(\mathbf{x}; \hat{\mathbf{x}})$

PCA as Neural Network

- + This looks like something we had before!
- Yes! It's an *encoder-decoder architecture whose label is the input*



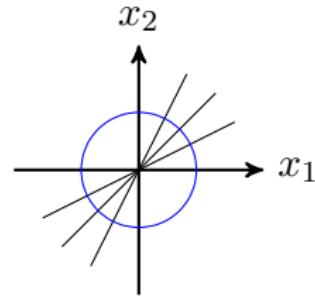
- Encoder represents input in a lower dimension
 - ↳ It somehow compresses the input
- Bottleneck contains the **latent variables**
- Decoder can return back the data from its low-dimensional representation
 - ↳ It decompresses the **latent variables**

Nonlinear Compression

Encoder and decoder are both *shallow* and *linear* in PCA: we may however need *deep nonlinear* encoder and decoder

Let's consider an example: consider our initial simple example and now assume that data-points are of the form

$$\mathbf{x} = \begin{bmatrix} \sin \theta \\ \cos \theta \end{bmatrix}$$

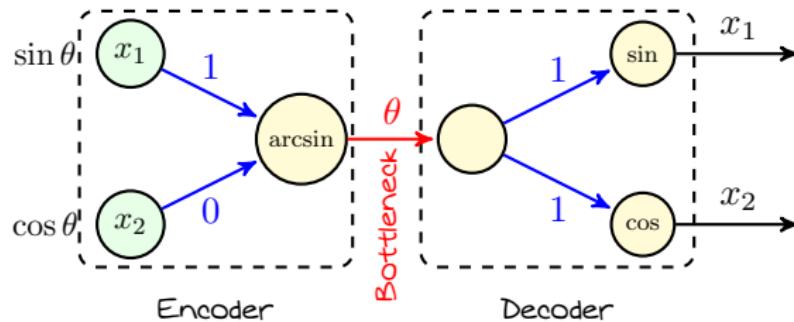


Obviously PCA *fails* to compress \mathbf{x} *error-less* into one dimension

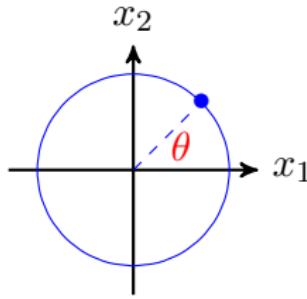
- PCA searches for *a line* that *represents* the dataset
 - ↳ In general, it finds the *line with minimum error*
- A *line with zero error* does not exist in this problem

Nonlinear Compression

We can however do this by a nonlinear representation

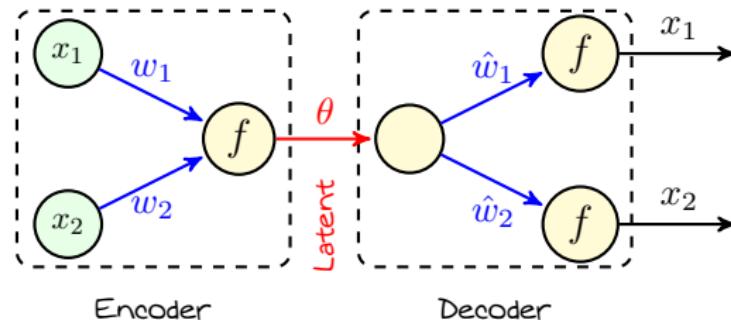


We just need to know the angle θ



Nonlinear PCA

We can use this NN to extract principal components of other datasets



Latent variable θ represents data in lower dimension for minimal recovery error

